The refraction of rays in the Savart polariscope is different from the isotropic medium. We have analysed and discussed the refraction of rays in the Savart polariscope on the basis of the Snell law. The refraction fo...The refraction of rays in the Savart polariscope is different from the isotropic medium. We have analysed and discussed the refraction of rays in the Savart polariscope on the basis of the Snell law. The refraction formulae of the extraordinary rays and ordinary rays were derived. Results obtained may provide theoretical and practical guide lines for studying, developing and engineering of polarization interference imaging spectrometer.展开更多
We fabricate a series of periodic arrays of subwavelength square and rectangular air holes on gold films, and measure the transmission spectra of these metallic nanostructures. By changing some geometrical and physica...We fabricate a series of periodic arrays of subwavelength square and rectangular air holes on gold films, and measure the transmission spectra of these metallic nanostructures. By changing some geometrical and physical parameters, such as array period, air hole size and shape, and the incident light polarization, we verify that both global surface plasmon resonance and localized waveguide mode resonance are influential on enhancing the transmission of light through nanostructured metal films. These two resonances induce different behaviours of transmission peak shift. The transmission through the rectangular air-hole structures exhibits an obvious polarization effect dependent on the morphology. Numerical simulations are also made by a plane-wave transfer-matrix method and in good consistency with the experimental results.展开更多
In this paper we study the extraordinary optical transmission of one-dimensional multi-slits in an ideal metal film.The transmissivity is calculated as a function of various structural parameters.The transmissivity os...In this paper we study the extraordinary optical transmission of one-dimensional multi-slits in an ideal metal film.The transmissivity is calculated as a function of various structural parameters.The transmissivity oscillates,with the period being just the light wavelength,as a function of the spacing between slits.As the number of slits increases,the transmissivity varies in one of three ways.It can increase,attenuate,or remain basically unchanged,depending on the spacing between slits.Each way is in an oscillatory manner.The slit interaction responsible for the oscillating transmission strength that depends on slit spacing is the subject of more detailed investigation.The interaction most intuitively manifests as a current distribution in the metal surface between slits.We find that this current is attenuated in an oscillating fashion from the slit corners to the center of the region between two adjacent slits,and we present a mathematical expression for its waveform.展开更多
Metamaterials composed of metallic antennae arrays are used as they possess extraordinary optical transmission(EOT)in the terahertz(THz)region,whereby a giant forward light propagation can be created using constructiv...Metamaterials composed of metallic antennae arrays are used as they possess extraordinary optical transmission(EOT)in the terahertz(THz)region,whereby a giant forward light propagation can be created using constructive interference of tunneling surface plasmonic waves.However,numerous applications of THz meta-devices demand an active manipula-tion of the THz beam in free space.Although some studies have been carried out to control the EOT for the THz region,few of these are based upon electrical modulation of the EOT phenomenon,and novel strategies are required for act-ively and dynamically reconfigurable EOT meta-devices.In this work,we experimentally present that the EOT resonance can be coupled to optically reconfigurable chalcogenide metamaterials which offers a reversible all-optical control of the THz light.A modulation efficiency of 88%in transmission at 0.85 THz is experimentally observed using the EOT metama-terials,which is composed of a gold(Au)circular aperture array sitting on a non-volatile chalcogenide phase change ma-terial(Ge2Sb2Te5)film.This comes up with a robust and ultrafast reconfigurable EOT over 20 times of switching,excited by a nanosecond pulsed laser.The measured data have a good agreement with finite-element-method numerical simula-tion.This work promises THz modulators with significant on/off ratios and fast speeds.展开更多
The ordinary–slow extraordinary–Bernstein(O-SX-B) mode conversion in the electron cyclotron range of frequencies(ECRF) is revisited in slab geometry. The analytical formula of the O-SX conversion efficiency by M...The ordinary–slow extraordinary–Bernstein(O-SX-B) mode conversion in the electron cyclotron range of frequencies(ECRF) is revisited in slab geometry. The analytical formula of the O-SX conversion efficiency by Mj?lhus is upgraded to include the magnetic field gradient, and the analytical expression of the SX-B conversion efficiency by Ram and Schultz is generalized for the case of oblique injection. Therefore, the conversion efficiency and optimal parallel refractive index for the whole O-SX-B conversion are obtained analytically and a shift of optimal parallel refractive index due to SX-FX loss is found. Full wave calculations are also presented to be compared with the analytical results.展开更多
We report the design of a sensitive,electrochemical aptasensor for detection of ochratoxin A(OTA)with an extraordinary tunable dynamic sensing range.This electrochemical aptasensor is constructed based on the target i...We report the design of a sensitive,electrochemical aptasensor for detection of ochratoxin A(OTA)with an extraordinary tunable dynamic sensing range.This electrochemical aptasensor is constructed based on the target induced aptamer-folding detection mechanism and the recognition between OTA and its aptamers results in the conformational change of the aptamer probe and thus signal changes for measurement.The dynamic sensing range of the electrochemical aptasensor is successfully tuned by introduction of free assistant aptamer probes in the sensing system.Our electrochemical aptasensor shows an extraordinary dynamic sensing range of 11-order magnitude of OTA concentration from 10^−8 to 10^2 ng/g.Of great significance,the signal response in all OTA concentration ranges is at the same current scale,demonstrating that our sensing protocol in this research could be applied for accurate detections of OTA in a broad range without using any complicated treatment of signal amplification.Finally,OTA spiked red wine and maize samples in different dynamic sensing ranges are determined with the electrochemical aptasensor under optimized sensing conditions.This tuning strategy of dynamic sensing range may offer a promising platform for electrochemical aptasensor optimizations in practical applications.展开更多
The extraordinary transmission (ET) phenomenon is examined for waves propagating through gaps of vertical thin barriers in channels with a hypersingular boundary element method model on the linear potential theory, an...The extraordinary transmission (ET) phenomenon is examined for waves propagating through gaps of vertical thin barriers in channels with a hypersingular boundary element method model on the linear potential theory, and an estimate formula based on small gap approximation for predicting the number of ET frequencies is proposed. Numerical computations are carried out to examine the influences of barrier number, barrier interval, gap size, gap position and barrier arrangement on extraordinary transmission and wave height in the channel. It shows that all of those factors evidently affect the extraordinary transmission frequencies. The contours of wave amplitude show that very high waves can be excited in the basins between barriers at the extraordinary transmission frequencies. Proper arrangement of barriers in a channel can avoid the occurrence of ET phenomenon and reduce wave height in the channel.展开更多
Extraordinary acoustic transmission (EAT) has been investigated in a tunable bull's eye structure. We demonstrate that the transmission coefficient of acoustic waves can be modulated by a grating structure. When th...Extraordinary acoustic transmission (EAT) has been investigated in a tunable bull's eye structure. We demonstrate that the transmission coefficient of acoustic waves can be modulated by a grating structure. When the grating is located at a distance of 0.5 mm from the base plate, the acoustic transmission shows an 8.77-fold enhancement compared to that by using a traditional bull's eye structure. When the distance increases to 1.5 mm, the transmission approaches zero, indicating a total reflection. Thus, we can make an efficient modulation of acoustic transmission from 0 to 877%. The EAT effects have been ascribed to the coupling of structure-induced resonance with the diffractive wave and the waveguide modes, as well as the Fabry-Perot resonances. As a potential application, the modulation of far-field collimation is illustrated in the proposed bull's eye structure.展开更多
We investigate both experimentally and numerically a complex structure, where 'face-to-face' Helmholtz resonance cavities (HRCs) are introduced to construct a one-dimensional acoustic grating. In this system, pair...We investigate both experimentally and numerically a complex structure, where 'face-to-face' Helmholtz resonance cavities (HRCs) are introduced to construct a one-dimensional acoustic grating. In this system, pairs of HRCs can intensely couple with each other in two forms: a bonding state and an anti-bonding state, analogous to the character of hydrogen molecule with two atoms due to the interference of wave functions of sound among the acoustic local-resonating structures. The bonding state is a 'bright' state that interferes with the Fabry-Pbrot resonance mode, thereby causing this state to break up into two modes as the splitting of the extraordinary acoustic transmission peak. On the contrary, the anti-bonding state is a 'dark' state in which the resonance mode remains entirely localized within the HRCs, and has no contribution to the acoustic transmission.展开更多
Pyrrolic and pyridinic N dopants can dramatically increase the electrochemical activities of carbon and conducting polymers.Although N-doped conducting polymers suffer from rapid degradation,their carbon counterpart o...Pyrrolic and pyridinic N dopants can dramatically increase the electrochemical activities of carbon and conducting polymers.Although N-doped conducting polymers suffer from rapid degradation,their carbon counterpart of extraordinary capacitance has remarkable rate performance and cycling endurance thanks to carbon’s excellent electrical conductivity.But high nitrogen content and high electrical conductivity are difficult to achieve in a high-surface-area carbon,because the high chemical vapor deposition(CVD)temperature required for obtaining high conductivity also destabilizes under-coordinated pyrrolic and pyridinic nitrogen and tends to lower the surface area.Here we resolve this dilemma by using SiO2 as an effective N-fixation additive,which stabilizes the N-rich nano few-layer sp2-carbon construct in1000℃CVD.This enables a scalable sol-gel/CVD fabrication process for few-layer carbon electrodes of extraordinary capacitance(690 F g^-1).The electrodes have excellent rate performance and can maintain90%of their initial capacitance after 30,000 cycles,thus potentially suitable for practical applications.展开更多
We studied numerically the temperature dependent extraordinary terahertz transmission through niobium nitride(NbN) film perforated with subwavelength spindle-like apertures. Both the resonant frequency and intensity o...We studied numerically the temperature dependent extraordinary terahertz transmission through niobium nitride(NbN) film perforated with subwavelength spindle-like apertures. Both the resonant frequency and intensity of extraordinary terahertz transmission peaks can be greatly modified by the transition of NbN film from the normal state to the superconducting state. An enhancement of the(±1, 0) NbN/magnesium oxide(MgO) peak intensity as high as 200% is demonstrated due to the combined contribution of both the superconducting transition and the excitation of localized surface plasmons(LSPs) around the apertures. The extraordinary terahertz transmission through spindle-like hole arrays patterned on the NbN film can pave the way for us to explore novel active tuning devices.展开更多
We present a silicon slot waveguide with metallic gratings embedded on the silicon surface in the slot region. The dependence of the optical coupling between two silicon wires on the width of the metal gap and the slo...We present a silicon slot waveguide with metallic gratings embedded on the silicon surface in the slot region. The dependence of the optical coupling between two silicon wires on the width of the metal gap and the slot size are studied in detail. The results show that the optical field in the slot region with metallic gratings is significantly enhanced compared with the traditional slot waveguide due to the surface plasmon polaritons coupling on metallic gratings. The extraordinary optical confinement is attributed to the low effective dielectric constant of metallic gratings. The effective dielectric constant decreases with the increasing wavelength, and reaches the minimum when the width of the metal gap is about 0.01 times the wavelength.展开更多
THE Hong Kong Special Administrative Regionis now five years old. These have been fiveextraordinary and innovative years, duringwhich the concept of "one country, two sys-tems" advocated by Deng Xiaoping has...THE Hong Kong Special Administrative Regionis now five years old. These have been fiveextraordinary and innovative years, duringwhich the concept of "one country, two sys-tems" advocated by Deng Xiaoping has become展开更多
A single metallic nanoslit is employed for investigating the contribution of Surface Plasmon Polaritons(SPPs) to Extraordinary Optical Transmission(EOT) based on rigorous electromagnetic theory and the Spectrum Analys...A single metallic nanoslit is employed for investigating the contribution of Surface Plasmon Polaritons(SPPs) to Extraordinary Optical Transmission(EOT) based on rigorous electromagnetic theory and the Spectrum Analysis Method(SAM). Numerical results shows that the SPP is the main factor responsible for the EOT, and a phase singularity is observed.展开更多
The past five years of Intertextile Shanghai Apparel Fabrics In the 19th National Congress of the Communist Party of China,2017 China International Trade Fair for Apparel Fabrics and Accessories(referred to as Intert...The past five years of Intertextile Shanghai Apparel Fabrics In the 19th National Congress of the Communist Party of China,2017 China International Trade Fair for Apparel Fabrics and Accessories(referred to as Intertextile Shanghai Apparel Fabrics)will raise the curtain.Since the 18th National Congress of the Communist Party of China,general secretary Xi Jinping has evaluated the five years with the word"extraordinary".展开更多
基金supported by the State Key Program of National Natural Science of China (Grant No 40537031)the National Natural Science Foundation of China (Grant Nos 40375010 and 60278019)+2 种基金the Science and Technology Plan Foundation of Shaanxi Province of China (Contract No 2005K04-G18)the special research project of Shaanxi Provincial Educational Department of China (Grant Nos 07JK261 and 05JK197)the research project of Xi’an Polytechnic University of China (Grant No 2006XG34)
文摘The refraction of rays in the Savart polariscope is different from the isotropic medium. We have analysed and discussed the refraction of rays in the Savart polariscope on the basis of the Snell law. The refraction formulae of the extraordinary rays and ordinary rays were derived. Results obtained may provide theoretical and practical guide lines for studying, developing and engineering of polarization interference imaging spectrometer.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10525419,60736041 and 10874238)the National Key Basic Research Special Foundation of China (Grant No. 2006CB302901)
文摘We fabricate a series of periodic arrays of subwavelength square and rectangular air holes on gold films, and measure the transmission spectra of these metallic nanostructures. By changing some geometrical and physical parameters, such as array period, air hole size and shape, and the incident light polarization, we verify that both global surface plasmon resonance and localized waveguide mode resonance are influential on enhancing the transmission of light through nanostructured metal films. These two resonances induce different behaviours of transmission peak shift. The transmission through the rectangular air-hole structures exhibits an obvious polarization effect dependent on the morphology. Numerical simulations are also made by a plane-wave transfer-matrix method and in good consistency with the experimental results.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11074145,10874124,and 61275028)
文摘In this paper we study the extraordinary optical transmission of one-dimensional multi-slits in an ideal metal film.The transmissivity is calculated as a function of various structural parameters.The transmissivity oscillates,with the period being just the light wavelength,as a function of the spacing between slits.As the number of slits increases,the transmissivity varies in one of three ways.It can increase,attenuate,or remain basically unchanged,depending on the spacing between slits.Each way is in an oscillatory manner.The slit interaction responsible for the oscillating transmission strength that depends on slit spacing is the subject of more detailed investigation.The interaction most intuitively manifests as a current distribution in the metal surface between slits.We find that this current is attenuated in an oscillating fashion from the slit corners to the center of the region between two adjacent slits,and we present a mathematical expression for its waveform.
文摘Metamaterials composed of metallic antennae arrays are used as they possess extraordinary optical transmission(EOT)in the terahertz(THz)region,whereby a giant forward light propagation can be created using constructive interference of tunneling surface plasmonic waves.However,numerous applications of THz meta-devices demand an active manipula-tion of the THz beam in free space.Although some studies have been carried out to control the EOT for the THz region,few of these are based upon electrical modulation of the EOT phenomenon,and novel strategies are required for act-ively and dynamically reconfigurable EOT meta-devices.In this work,we experimentally present that the EOT resonance can be coupled to optically reconfigurable chalcogenide metamaterials which offers a reversible all-optical control of the THz light.A modulation efficiency of 88%in transmission at 0.85 THz is experimentally observed using the EOT metama-terials,which is composed of a gold(Au)circular aperture array sitting on a non-volatile chalcogenide phase change ma-terial(Ge2Sb2Te5)film.This comes up with a robust and ultrafast reconfigurable EOT over 20 times of switching,excited by a nanosecond pulsed laser.The measured data have a good agreement with finite-element-method numerical simula-tion.This work promises THz modulators with significant on/off ratios and fast speeds.
基金supported by National Natural Science Foundation of China(Grant Nos.11325524 and 11261140327)Ministry of Science and Technology of China(Contract No.2013GB112001)
文摘The ordinary–slow extraordinary–Bernstein(O-SX-B) mode conversion in the electron cyclotron range of frequencies(ECRF) is revisited in slab geometry. The analytical formula of the O-SX conversion efficiency by Mj?lhus is upgraded to include the magnetic field gradient, and the analytical expression of the SX-B conversion efficiency by Ram and Schultz is generalized for the case of oblique injection. Therefore, the conversion efficiency and optimal parallel refractive index for the whole O-SX-B conversion are obtained analytically and a shift of optimal parallel refractive index due to SX-FX loss is found. Full wave calculations are also presented to be compared with the analytical results.
基金This work is financially supported by the NSFC grant of 21475030the S&T Research Project of Anhui Province15czz03109the National 10000 Talents-Youth Top-notch Talent Program.
文摘We report the design of a sensitive,electrochemical aptasensor for detection of ochratoxin A(OTA)with an extraordinary tunable dynamic sensing range.This electrochemical aptasensor is constructed based on the target induced aptamer-folding detection mechanism and the recognition between OTA and its aptamers results in the conformational change of the aptamer probe and thus signal changes for measurement.The dynamic sensing range of the electrochemical aptasensor is successfully tuned by introduction of free assistant aptamer probes in the sensing system.Our electrochemical aptasensor shows an extraordinary dynamic sensing range of 11-order magnitude of OTA concentration from 10^−8 to 10^2 ng/g.Of great significance,the signal response in all OTA concentration ranges is at the same current scale,demonstrating that our sensing protocol in this research could be applied for accurate detections of OTA in a broad range without using any complicated treatment of signal amplification.Finally,OTA spiked red wine and maize samples in different dynamic sensing ranges are determined with the electrochemical aptasensor under optimized sensing conditions.This tuning strategy of dynamic sensing range may offer a promising platform for electrochemical aptasensor optimizations in practical applications.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51490672 and 51879039)
文摘The extraordinary transmission (ET) phenomenon is examined for waves propagating through gaps of vertical thin barriers in channels with a hypersingular boundary element method model on the linear potential theory, and an estimate formula based on small gap approximation for predicting the number of ET frequencies is proposed. Numerical computations are carried out to examine the influences of barrier number, barrier interval, gap size, gap position and barrier arrangement on extraordinary transmission and wave height in the channel. It shows that all of those factors evidently affect the extraordinary transmission frequencies. The contours of wave amplitude show that very high waves can be excited in the basins between barriers at the extraordinary transmission frequencies. Proper arrangement of barriers in a channel can avoid the occurrence of ET phenomenon and reduce wave height in the channel.
基金Project supported by the National Basic Research Program of China(Grant No.2012CB921504)the National Natural Science Foundation of China(GrantNos.11104139,11274171,11274099,and 11204145)+1 种基金SRFDP(Grant Nos.20110091120040,20120091110001,and 20130091130004)the NaturalScience Foundation of Jiangsu Province,China(Grant No.BK2011542)
文摘Extraordinary acoustic transmission (EAT) has been investigated in a tunable bull's eye structure. We demonstrate that the transmission coefficient of acoustic waves can be modulated by a grating structure. When the grating is located at a distance of 0.5 mm from the base plate, the acoustic transmission shows an 8.77-fold enhancement compared to that by using a traditional bull's eye structure. When the distance increases to 1.5 mm, the transmission approaches zero, indicating a total reflection. Thus, we can make an efficient modulation of acoustic transmission from 0 to 877%. The EAT effects have been ascribed to the coupling of structure-induced resonance with the diffractive wave and the waveguide modes, as well as the Fabry-Perot resonances. As a potential application, the modulation of far-field collimation is illustrated in the proposed bull's eye structure.
基金Supported by the National Basic Research Program of China under Grant Nos 2012CB921503,2013CB632904 and 2013CB632702the National Natural Science Foundation of China under Grant No 1134006+2 种基金the Natural Science Foundation of Jiangsu Province under Grant No BK20140019the Project Funded by the Priority Academic Program Development of Jiangsu Higher Educationthe China Postdoctoral Science Foundation under Grant Nos 2012M511249 and 2013T60521
文摘We investigate both experimentally and numerically a complex structure, where 'face-to-face' Helmholtz resonance cavities (HRCs) are introduced to construct a one-dimensional acoustic grating. In this system, pairs of HRCs can intensely couple with each other in two forms: a bonding state and an anti-bonding state, analogous to the character of hydrogen molecule with two atoms due to the interference of wave functions of sound among the acoustic local-resonating structures. The bonding state is a 'bright' state that interferes with the Fabry-Pbrot resonance mode, thereby causing this state to break up into two modes as the splitting of the extraordinary acoustic transmission peak. On the contrary, the anti-bonding state is a 'dark' state in which the resonance mode remains entirely localized within the HRCs, and has no contribution to the acoustic transmission.
基金supported by the National Key Research and Development Program of China(Grant no.2016YFB0901600)the National Natural Science Foundation of China(Grant nos.51922103 and 51672301)the Key Research Program of Chinese Academy of Sciences(Grant no.QYZDJSSW-JSC013)。
文摘Pyrrolic and pyridinic N dopants can dramatically increase the electrochemical activities of carbon and conducting polymers.Although N-doped conducting polymers suffer from rapid degradation,their carbon counterpart of extraordinary capacitance has remarkable rate performance and cycling endurance thanks to carbon’s excellent electrical conductivity.But high nitrogen content and high electrical conductivity are difficult to achieve in a high-surface-area carbon,because the high chemical vapor deposition(CVD)temperature required for obtaining high conductivity also destabilizes under-coordinated pyrrolic and pyridinic nitrogen and tends to lower the surface area.Here we resolve this dilemma by using SiO2 as an effective N-fixation additive,which stabilizes the N-rich nano few-layer sp2-carbon construct in1000℃CVD.This enables a scalable sol-gel/CVD fabrication process for few-layer carbon electrodes of extraordinary capacitance(690 F g^-1).The electrodes have excellent rate performance and can maintain90%of their initial capacitance after 30,000 cycles,thus potentially suitable for practical applications.
基金Project supported by the National Basic Research Program of China (Grant Nos. 2011CBA00110 and 2011CBA00107) and the National Natural Science Foundation of China.
文摘We studied numerically the temperature dependent extraordinary terahertz transmission through niobium nitride(NbN) film perforated with subwavelength spindle-like apertures. Both the resonant frequency and intensity of extraordinary terahertz transmission peaks can be greatly modified by the transition of NbN film from the normal state to the superconducting state. An enhancement of the(±1, 0) NbN/magnesium oxide(MgO) peak intensity as high as 200% is demonstrated due to the combined contribution of both the superconducting transition and the excitation of localized surface plasmons(LSPs) around the apertures. The extraordinary terahertz transmission through spindle-like hole arrays patterned on the NbN film can pave the way for us to explore novel active tuning devices.
基金Supported by the Key Grant Project of the Ministry of Education of China under Grant No 313007
文摘We present a silicon slot waveguide with metallic gratings embedded on the silicon surface in the slot region. The dependence of the optical coupling between two silicon wires on the width of the metal gap and the slot size are studied in detail. The results show that the optical field in the slot region with metallic gratings is significantly enhanced compared with the traditional slot waveguide due to the surface plasmon polaritons coupling on metallic gratings. The extraordinary optical confinement is attributed to the low effective dielectric constant of metallic gratings. The effective dielectric constant decreases with the increasing wavelength, and reaches the minimum when the width of the metal gap is about 0.01 times the wavelength.
文摘THE Hong Kong Special Administrative Regionis now five years old. These have been fiveextraordinary and innovative years, duringwhich the concept of "one country, two sys-tems" advocated by Deng Xiaoping has become
基金supported by the National Basic Research Program of China(Grant No.2006CB302901)the InnovationTeam Development Program of the Chinese Ministry of Education(Grant No.IRT0606)
文摘A single metallic nanoslit is employed for investigating the contribution of Surface Plasmon Polaritons(SPPs) to Extraordinary Optical Transmission(EOT) based on rigorous electromagnetic theory and the Spectrum Analysis Method(SAM). Numerical results shows that the SPP is the main factor responsible for the EOT, and a phase singularity is observed.
文摘The past five years of Intertextile Shanghai Apparel Fabrics In the 19th National Congress of the Communist Party of China,2017 China International Trade Fair for Apparel Fabrics and Accessories(referred to as Intertextile Shanghai Apparel Fabrics)will raise the curtain.Since the 18th National Congress of the Communist Party of China,general secretary Xi Jinping has evaluated the five years with the word"extraordinary".