期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
The automorphism group of a generalized extraspecial p-group 被引量:6
1
作者 Liu HeGuo Wang YuLei 《Science China Mathematics》 SCIE 2010年第2期316-335,共20页
In this paper, the automorphism group of a generalized extraspecial p-group G is determined, where p is a prime number. Assume that |G| = p 2n+m and |ζG| = p m , where n 1 and m 2. (1) When p is odd, let Aut G G = {... In this paper, the automorphism group of a generalized extraspecial p-group G is determined, where p is a prime number. Assume that |G| = p 2n+m and |ζG| = p m , where n 1 and m 2. (1) When p is odd, let Aut G G = {α∈ AutG | α acts trivially on G }. Then Aut G G⊿AutG and AutG/Aut G G≌Z p-1 . Furthermore, (i) If G is of exponent p m , then Aut G G/InnG≌Sp(2n, p) × Z p m-1 . (ii) If G is of exponent p m+1 , then Aut G G/InnG≌ (K Sp(2n-2, p))×Z p m-1 , where K is an extraspecial p-group of order p 2n-1 . In particular, Aut G G/InnG≌ Z p × Z p m-1 when n = 1. (2) When p = 2, then, (i) If G is of exponent 2 m , then AutG≌ Sp(2n, 2) × Z 2 × Z 2 m-2 . In particular, when n = 1, |AutG| = 3 · 2 m+2 . None of the Sylow subgroups of AutG is normal, and each of the Sylow 2-subgroups of AutG is isomorphic to H K, where H = Z 2 × Z 2 × Z 2 × Z 2 m-2 , K = Z 2 . (ii) If G is of exponent 2 m+1 , then AutG≌ (I Sp(2n-2, 2)) × Z 2 × Z 2 m-2 , where I is an elementary abelian 2-group of order 2 2n-1 . In particular, when n = 1, |AutG| = 2 m+2 and AutG≌ H K, where H = Z 2 × Z 2 × Z 2 m-1 , K = Z 2 . 展开更多
关键词 GENERALIZED extraspecial P-GROUPS central product SYMPLECTIC groups AUTOMORPHISMS
原文传递
Automorphism Groups of Some Finite p-Groups 被引量:1
2
作者 Heguo Liu Yulei Wang 《Algebra Colloquium》 SCIE CSCD 2016年第4期623-650,共28页
The automorphism group of G is determined, where G is a nonabelian p-group given by a central extension as 1→Zpm→G→Zp×…×Zp→1 such that its derived subgroup has order p.
关键词 generalized extraspecial p-group symplectic space orthogonal space auto-morphism central extension
原文传递
Automorphisms of Extensions of Q by a Direct Sum of Finitely Many Copies of Q
3
作者 He Guo LIU Yu Lei WANG Ji Ping ZHANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2019年第2期204-212,共9页
Let G be an extension of Q by a direct sum of r copies of Q.(1) If G is abelian, then G is a direct sum of r + 1 copies of Q and Aut G = GL(r + 1, Q);(2) If G is non-abelian, then G is a direct product of an extraspec... Let G be an extension of Q by a direct sum of r copies of Q.(1) If G is abelian, then G is a direct sum of r + 1 copies of Q and Aut G = GL(r + 1, Q);(2) If G is non-abelian, then G is a direct product of an extraspecial Q-group E and m copies of Q, where E/ζ E is a linear space over Q with dimension 2 n and m + 2 n = r. Furthermore, let Aut_G'G be the normal subgroup of Aut G consisting of all elements of Aut G which act trivially on the derived subgroup G of G, and Aut_(G/ζG),_(ζG)G be the normal subgroup of Aut G consisting of all central automorphisms of G which also act trivially on the center ζ G of G. Then(i) The extension 1→ Aut_(G')G→ Aut G→ Aut G'→ 1 is split;(ii)Aut_(G')G/Aut_(G/ζG),_(ζG)G = Sp(2 n, Q) ×(GL(m, Q) Q^(m));(iii) Aut_(G/ζG),ζGG/Inn G= Q^(2 nm). 展开更多
关键词 extraspecial Q-group GROUP extension SYMPLECTIC GROUP AUTOMORPHISM GROUP
原文传递
On Non-commuting Sets in Certain Finite p-Groups
4
作者 Heguo Liu Yulei Wang 《Algebra Colloquium》 SCIE CSCD 2015年第4期555-560,共6页
Let G be a group. A subset X of G is said to be non-commuting if xy ≠ yx for any x, y ∈ X with x ≠ y. If {X}≥ IYI for any other non-commuting set Y in G, then X is said to be a maximal non-commuting set. In this p... Let G be a group. A subset X of G is said to be non-commuting if xy ≠ yx for any x, y ∈ X with x ≠ y. If {X}≥ IYI for any other non-commuting set Y in G, then X is said to be a maximal non-commuting set. In this paper, the bound for the cardinality of a maximal non-commuting set in a finite p-group G is determined, where G is a non-abelian p-group given by a central extension as1 → Zp→ G →Zp ×→ × Zp →1 and its derivedsubgroup has order p. 展开更多
关键词 generalized extraspecial p-group central product non-commuting set
原文传递
The Automorphism Group of a Class of Nilpotent Groups with Infinite Cyclic Derived Subgroups
5
作者 He Guo LIU Yu Lei WANG Ji Ping ZHANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2018年第7期1151-1158,共8页
The automorphism group of a class of nilpotent groups with infinite cyclic derived subgroups is determined. Let G be the direct product of a generalized extraspecial E-group E and a free abelian group A with rank m, w... The automorphism group of a class of nilpotent groups with infinite cyclic derived subgroups is determined. Let G be the direct product of a generalized extraspecial E-group E and a free abelian group A with rank m, where E={{1 kα1 kα2…kαn aα+1 0 1 0 … 0 αn+2 0 0 0 … 1 α2n+1 0 0 0 …0 1}}αi∈Z,i=1,2,…,2n+1},where k is a positive integer. Let AutG'G be the normal subgroup of AutG consisting of all elements of AutG which act trivially on the derived subgroup G' of G, and Autc G/ζG,ζGG be the normal subgroup of AutG consisting of all central automorphisms of G which also act trivially on the center ζG of G. Then (i) The extension →AutG'G→AutG→AutG'→1 is split.(ii)AutG'G/AutG/ζG,ζGG≈Sp(2n,Z)×(GL(m,Z)×(Z)m),(iii)Aut GζG,ζGG/InnG≈(Zk)2n+(Z)2nm. 展开更多
关键词 Generalized extraspecial Z-group symplectic group automorphism group
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部