期刊文献+
共找到1,182篇文章
< 1 2 60 >
每页显示 20 50 100
Multiobjective extremal optimization with applications to engineering design 被引量:3
1
作者 CHEN Min-rong LU Yong-zai YANG Gen-ke 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第12期1905-1911,共7页
In this paper, we extend a novel unconstrained multiobjective optimization algorithm, so-called multiobjective extremal optimization (MOEO), to solve the constrained multiobjective optimization problems (MOPs). Th... In this paper, we extend a novel unconstrained multiobjective optimization algorithm, so-called multiobjective extremal optimization (MOEO), to solve the constrained multiobjective optimization problems (MOPs). The proposed approach is validated by three constrained benchmark problems and successfully applied to handling three multiobjective engineering design problems reported in literature. Simulation results indicate that the proposed approach is highly competitive with three state-of-the-art multiobjective evolutionary algorithms, i.e., NSGA-11, SPEA2 and PAES. Thus MOEO can be considered a good alternative to solve constrained multiobjective optimization problems. 展开更多
关键词 Multiobjective optimization extremal optimization eo Engineering design
下载PDF
Hybrid artificial immune system and extremal optimization algorithm for permutation flowshop scheduling problem 被引量:2
2
作者 孙凯 杨根科 《Journal of Shanghai University(English Edition)》 CAS 2008年第4期352-357,共6页
The permutation flowshop scheduling problem (PFSP) is one of the most well-known and well-studied production scheduling problems with strong industrial background. This paper presents a new hybrid optimization algor... The permutation flowshop scheduling problem (PFSP) is one of the most well-known and well-studied production scheduling problems with strong industrial background. This paper presents a new hybrid optimization algorithm which combines the strong global search ability of artificial immune system (AIS) with a strong local search ability of extremal optimization (EO) algorithm. The proposed algorithm is applied to a set of benchmark problems with a makespan criterion. Performance of the algorithm is evaluated. Comparison results indicate that this new method is an effective and competitive approach to the PFSP. 展开更多
关键词 artificial immune system (AIS) extremal optimization eo permutation flowshop scheduling problem (PFSP)
下载PDF
Design for Two-degree-of-freedom PID Regulator Based on Improved Generalized Extremal Optimization Algorithm
3
作者 霍海波 朱新坚 曹广义 《Journal of Shanghai Jiaotong university(Science)》 EI 2007年第2期148-152,158,共6页
A kind of new design method for two-degree-of-freedom(2DOF)PID regulator was presented,in which,a new global search heuristic--improved generalized extremal optimization(GEO)algorithm is applied to the parameter optim... A kind of new design method for two-degree-of-freedom(2DOF)PID regulator was presented,in which,a new global search heuristic--improved generalized extremal optimization(GEO)algorithm is applied to the parameter optimization design of 2DOF PID regulator.The simulated results show that very good dynamic response performance of both command tracking and disturbance rejection characteristics can be achieved simultaneously.At the same time,the comparisons of simulation results with the improved GA,the basic GEO and the improved GEO were given.From the comparisons,it is shown that the improved GEO algorithm is competitive in performance with the GA and basic GEO and is an attractive tool to be used in the design of two-degree-of-freedom PID regulator. 展开更多
关键词 two-degree-of-freedom control PID regulator generalized extremal optimization (Geo optimization design
下载PDF
Design and optimization of fluid lubricated bearings operated with extreme working performances——a comprehensive review
4
作者 Guohua Zhang Ming Huang +6 位作者 Gangli Chen Jiasheng Li Yang Liu Jianguo He Yueqing Zheng Siwei Tang Hailong Cui 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期325-376,共52页
Fluid lubricated bearings have been widely adopted as support components for high-end equipment in metrology,semiconductor devices,aviation,strategic defense,ultraprecision manufacturing,medical treatment,and power ge... Fluid lubricated bearings have been widely adopted as support components for high-end equipment in metrology,semiconductor devices,aviation,strategic defense,ultraprecision manufacturing,medical treatment,and power generation.In all these applications,the equipment must deliver extreme working performances such as ultraprecise movement,ultrahigh rotation speed,ultraheavy bearing loads,ultrahigh environmental temperatures,strong radiation resistance,and high vacuum operation,which have challenged the design and optimization of reliable fluid lubricated bearings.Breakthrough of any related bottlenecks will promote the development course of high-end equipment.To promote the advancement of high-end equipment,this paper reviews the design and optimization of fluid lubricated bearings operated at typical extreme working performances,targeting the realization of extreme working performances,current challenges and solutions,underlying deficiencies,and promising developmental directions.This paper can guide the selection of suitable fluid lubricated bearings and optimize their structures to meet their required working performances. 展开更多
关键词 fluid lubricated bearings structural design performance optimization extreme working performances
下载PDF
Multi-Objective Optimization Algorithm for Grouping Decision Variables Based on Extreme Point Pareto Frontier
5
作者 JunWang Linxi Zhang +4 位作者 Hao Zhang Funan Peng Mohammed A.El-Meligy Mohamed Sharaf Qiang Fu 《Computers, Materials & Continua》 SCIE EI 2024年第4期1281-1299,共19页
The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly... The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly focus on objectives,treating decision variables as a total variable to solve the problem without consideringthe critical role of decision variables in objective optimization.As seen,a variety of decision variable groupingalgorithms have been proposed.However,these algorithms are relatively broad for the changes of most decisionvariables in the evolution process and are time-consuming in the process of finding the Pareto frontier.To solvethese problems,a multi-objective optimization algorithm for grouping decision variables based on extreme pointPareto frontier(MOEA-DV/EPF)is proposed.This algorithm adopts a preprocessing rule to solve the Paretooptimal solution set of extreme points generated by simultaneous evolution in various target directions,obtainsthe basic Pareto front surface to determine the convergence effect,and analyzes the convergence and distributioneffects of decision variables.In the later stages of algorithm optimization,different mutation strategies are adoptedaccording to the nature of the decision variables to speed up the rate of evolution to obtain excellent individuals,thusenhancing the performance of the algorithm.Evaluation validation of the test functions shows that this algorithmcan solve the multi-objective optimization problem more efficiently. 展开更多
关键词 Multi-objective evolutionary optimization algorithm decision variables grouping extreme point pareto frontier
下载PDF
带时间窗约束的逆向物流路径优化研究
6
作者 杜丹丰 王晓倩 张凤梅 《包装工程》 北大核心 2025年第1期214-221,共8页
目的研究退货逆向物流的路径优化,以降低企业成本,促进退货逆向物流的发展。方法聚焦于退货逆向物流的路径优化,充分考虑了运输成本和时间窗违规的惩罚因素,构建了一个旨在最小化回收成本的车辆路径优化模型。为了克服平衡优化器(Equili... 目的研究退货逆向物流的路径优化,以降低企业成本,促进退货逆向物流的发展。方法聚焦于退货逆向物流的路径优化,充分考虑了运输成本和时间窗违规的惩罚因素,构建了一个旨在最小化回收成本的车辆路径优化模型。为了克服平衡优化器(Equilibrium Optimizer,EO)算法容易陷入局部最优的限制,将其与变量邻域下降法结合起来加以改进,并将改进后的EO算法与模拟退火(Simulated Annealing,SA)算法进行比较分析,同时也将原来的EO算法与变量邻域下降法进行比较分析。结果优化后的EO算法相比于SA算法配送时间减少8.82%,总成本减少4.63%;相比于优化前的EO算法配送时间减少1.40%,总成本减少3.55%。结论改进后的EO算法在求解车辆路径优化模型上有更好的适应性和收敛性,可以有效减少成本,缩短路径和时间。 展开更多
关键词 逆向物流 路径优化 时间窗 平衡优化器算法
下载PDF
基于泊松噪声和优化极限学习机的多因素混合学习方法及应用
7
作者 蒋锋 路畅 王辉 《统计与决策》 北大核心 2025年第1期52-57,共6页
针对风电功率数据高波动性和间歇性的特点,文章提出了一种基于泊松噪声的互补集合经验模态分解(CEEMDPN)和改进的蛇优化算法(MSO)优化极限学习机的多因素混合学习方法。首先,利用CEEMDPN将风电功率序列分解为子序列;然后,引入曲线自适... 针对风电功率数据高波动性和间歇性的特点,文章提出了一种基于泊松噪声的互补集合经验模态分解(CEEMDPN)和改进的蛇优化算法(MSO)优化极限学习机的多因素混合学习方法。首先,利用CEEMDPN将风电功率序列分解为子序列;然后,引入曲线自适应调整参数改进蛇优化算法;最后,运用MSO优化的极限学习机(ELM)对每个子序列进行预测并集成。为了验证CEEMDPN-MSO-ELM模型的有效性,采用龙源电力集团的风电功率数据进行超短期预测,实证结果表明,CEEMDPN算法能够加强风电功率序列的主频率部分并提高分解精度,MSO算法能够很好地平衡算法的寻优速度与收敛精度,从而有效提升ELM模型的预测性能,所提模型的预测精度和稳健性均优于其他对比模型。 展开更多
关键词 超短期风电功率预测 互补集合经验模态分解 蛇优化算法 极限学习机
下载PDF
二元混合气体成分检测的改进蒲公英算法研究
8
作者 李鹏 汤炼海 +2 位作者 林事力 纵彪 于涛 《传感器与微系统》 北大核心 2025年第2期15-20,共6页
针对阵列传感器检测二元混合气体时由于交叉敏感特性导致准确率低的问题,提出一种改进型蒲公英优化(IDO)算法优化核极限学习机(KELM)的二元混合气体检测方法。首先,引入Kent映射初始化种群提高初始种群分布的均匀性,后将精英反向学习策... 针对阵列传感器检测二元混合气体时由于交叉敏感特性导致准确率低的问题,提出一种改进型蒲公英优化(IDO)算法优化核极限学习机(KELM)的二元混合气体检测方法。首先,引入Kent映射初始化种群提高初始种群分布的均匀性,后将精英反向学习策略(EOBL)引入蒲公英种子位置更新,提高原算法寻优精度。将该算法用于KELM参数寻优,建立改进DO(IDO)算法优化KELM模型,实现对二元混合气体的成分识别。实验结果表明:IDO算法优化的KELM模型对二元混合气体成分识别准确率可达99.71%,比原始KELM模型提高4.28%。 展开更多
关键词 改进蒲公英优化算法 核极限学习机 气体分类
下载PDF
EOS成像系统的介绍及其评估下肢力线临床价值的研究现状 被引量:4
9
作者 李青 翁文杰 +1 位作者 王渭君 孙明辉 《中国骨伤》 CAS CSCD 2019年第9期875-878,共4页
介绍EOS成像系统的原理和技术背景,结合该技术的宣传说明和现有的文献报道,了解到低剂量EOS技术可以将检查过程中的辐射剂量降低5~10倍,而微剂量EOS甚至可以将辐射剂量降低至45倍;在成像质量方面相较于CR的图像质量只高不低;系统自带有E... 介绍EOS成像系统的原理和技术背景,结合该技术的宣传说明和现有的文献报道,了解到低剂量EOS技术可以将检查过程中的辐射剂量降低5~10倍,而微剂量EOS甚至可以将辐射剂量降低至45倍;在成像质量方面相较于CR的图像质量只高不低;系统自带有EOS 2D和3D工作站,2D工作站可以帮助临床医生轻松实现对下肢冠状位和矢状位力线的测量和评估,在3D工作站进行三维模型重建后可以三维测量肢体的倾斜和扭转,利用这些测量结果,在进行术前评估、完善术前规划以及术后测量评估手术效果等方面给临床医生提供了极大的帮助。在测量的准确性方面,大量的文献报道认为EOS 2D测量和普通放射学测量精确度相当,而EOS 3D重建测量的精确度可媲美CT以及MRI。基于EOS的技术特点和优势,对其在评估下肢力线准确性方面的文献报道和研究进展作一综述。 展开更多
关键词 eoS 下肢 力线 放射测量术
下载PDF
基于APEO的分布式电源改进型下垂优化控制策略研究 被引量:6
10
作者 王环 曾国强 戴瑜兴 《电力系统保护与控制》 EI CSCD 北大核心 2020年第2期68-75,共8页
如何对分布式电源的控制策略和控制参数进行优化改进设计,使其更适应于线路阻抗为阻性的低压离网微电网等工作环境,具有重要意义。为此,设计提出了一种基于自适应群体极值优化(APEO)的分布式电源改进型下垂优化控制方法。该方法内容为... 如何对分布式电源的控制策略和控制参数进行优化改进设计,使其更适应于线路阻抗为阻性的低压离网微电网等工作环境,具有重要意义。为此,设计提出了一种基于自适应群体极值优化(APEO)的分布式电源改进型下垂优化控制方法。该方法内容为在传统下垂控制的基础上引入阻性下垂控制和相位平移量的累加控制,并将分布式电源改进型下垂控制器参数优化设计问题转换为一个典型的有约束优化问题,利用所设计的APEO算法获得分布式电源改进型下垂控制器最优参数,最终实现了电压稳定和功率协调的解耦控制,降低了分布式电源并离网切换时的暂态冲击,实现了分布式电源在工作模式未切换状态下的热插拔功能。最后在由两台容量为10 kW分布式电源构成的微电网实验系统上进行了硬件平台测试实验,验证了所提出的控制策略的有效性和可行性。 展开更多
关键词 下垂控制策略 分布式电源 极值优化 微电网(微网)
下载PDF
基于集成型极限学习机的氢燃料电池寿命预测
11
作者 杨淇 陈景文 +4 位作者 华志广 李祥隆 赵冬冬 兰天一 窦满峰 《电工技术学报》 北大核心 2025年第3期964-974,共11页
基于数据驱动的寿命预测方法能精准预测质子交换膜燃料电池(PEMFC)的剩余使用寿命,提高预测性能是当前寿命预测领域的研究热点。针对PEMFC寿命预测过程中预测精度与鲁棒性的提升问题,基于统计学原理的寿命预测方法,提出一种集成极限学习... 基于数据驱动的寿命预测方法能精准预测质子交换膜燃料电池(PEMFC)的剩余使用寿命,提高预测性能是当前寿命预测领域的研究热点。针对PEMFC寿命预测过程中预测精度与鲁棒性的提升问题,基于统计学原理的寿命预测方法,提出一种集成极限学习机(EELM)结构,对PEMFC的寿命进行长期预测。集成结构中包含了50次重复测试,通过局部强化优化器算法对每次测试结果进行优化,提升了寿命预测精度。在长期预测的结果中,给出了EELM预测结果的平均值和95%置信区间,提升了系统的鲁棒性。最后采用稳态电流、准动态电流条件和动态电流下的老化数据集验证了所提方法的有效性与可行性。 展开更多
关键词 质子交换膜燃料电池 极限学习机 集成结构 局部强化优化器
下载PDF
一种改进的遗传算法:GA-EO算法 被引量:3
12
作者 何嘉 李雪冬 《计算机应用研究》 CSCD 北大核心 2012年第9期3307-3308,3311,共3页
针对基本遗传算法(GA)有局部搜索能力差、计算量大、对较大搜索空间适应能力差和易收敛于局部极小值等问题,采用将极值优化(EO)算法与传统遗传算法相结合的方式,对基本遗传算法进行改进,提出了一种新的算法:GA-EO算法,并用实验证明了新... 针对基本遗传算法(GA)有局部搜索能力差、计算量大、对较大搜索空间适应能力差和易收敛于局部极小值等问题,采用将极值优化(EO)算法与传统遗传算法相结合的方式,对基本遗传算法进行改进,提出了一种新的算法:GA-EO算法,并用实验证明了新算法的有效性。 展开更多
关键词 遗传算法 混合遗传算法 极值优化算法 局部极小
下载PDF
基于CLD-COA-ELM的光伏阵列故障诊断方法研究
13
作者 张健 赵咪 +1 位作者 黄毅 李景云 《太阳能学报》 北大核心 2025年第1期632-640,共9页
为提升光伏阵列故障诊断的准确率,提出一种基于改进长鼻浣熊优化算法优化极限学习机的光伏阵列故障诊断方法。首先,分析阵列中光伏组件在发生故障时的输出特性,选择合适的故障特征;其次,针对极限学习机在光伏阵列故障分类时初始权值和... 为提升光伏阵列故障诊断的准确率,提出一种基于改进长鼻浣熊优化算法优化极限学习机的光伏阵列故障诊断方法。首先,分析阵列中光伏组件在发生故障时的输出特性,选择合适的故障特征;其次,针对极限学习机在光伏阵列故障分类时初始权值和阈值的随机性问题,采用长鼻浣熊优化算法求解最优的初始权重和阈值;进一步地,针对长鼻浣熊算法初始参数的随机性和全局搜索能力的局限性问题,通过Circle混沌映射、莱维飞行和动态折射反向学习对该算法进行优化,提高寻优精度和速度;最后,结合光伏阵列故障实验数据,验证故障诊断模型的分类效果。结果表明,对于训练集和测试集数据,该诊断模型提高了故障分类精度,诊断率分别达到100%和98.33%,优于传统极限学习机、BP神经网络、支持向量机和卷积神经网络故障诊断的准确率。 展开更多
关键词 光伏组件 故障分析 特征选择 监督学习 极限学习机 改进长鼻浣熊优化算法
下载PDF
Rockburst prediction based on multi-featured drilling parameters and extreme tree algorithm for full-section excavated tunnel faces
14
作者 Wenhao Yi Mingnian Wang +2 位作者 Qinyong Xia Yongyi He Hongqiang Sun 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期258-274,共17页
The suddenness, uncertainty, and randomness of rockbursts directly affect the safety of tunnel construction. The prediction of rockbursts is a fundamental aspect of mitigating or even eliminating rockburst hazards. To... The suddenness, uncertainty, and randomness of rockbursts directly affect the safety of tunnel construction. The prediction of rockbursts is a fundamental aspect of mitigating or even eliminating rockburst hazards. To address the shortcomings of the current rockburst prediction models, which have a limited number of samples and rely on manual test results as the majority of their input features, this paper proposes rockburst prediction models based on multi-featured drilling parameters of rock drilling jumbo. Firstly, four original drilling parameters, namely hammer pressure (Ph), feed pressure (Pf), rotation pressure (Pr), and feed speed (VP), together with the rockburst grades, were collected from 1093 rockburst cases. Then, a feature expansion investigation was performed based on the four original drilling parameters to establish a drilling parameter feature system and a rockburst prediction database containing 42 features. Furthermore, rockburst prediction models based on multi-featured drilling parameters were developed using the extreme tree (ET) algorithm and Bayesian optimization. The models take drilling parameters as input parameters and rockburst grades as output parameters. The effects of Bayesian optimization and the number of drilling parameter features on the model performance were analyzed using the accuracy, precision, recall and F1 value of the prediction set as the model performance evaluation indices. The results show that the Bayesian optimized model with 42 drilling parameter features as inputs performs best, with an accuracy of 91.89%. Finally, the reliability of the models was validated through field tests. 展开更多
关键词 Rockburst prediction Drilling parameters Feature system Extreme tree(ET) Bayesian optimization
下载PDF
芯片的EOS失效分析及焊接工艺优化 被引量:5
15
作者 吴顶和 沈萌 +1 位作者 邵雪峰 俞宏坤 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2008年第2期381-386,共6页
为了研究电过应力对功率MOSFET可靠性的影响,分别对含有焊料空洞、栅极开路和芯片裂纹缺陷的器件进行失效分析与可靠性研究.利用有限元分析、电路模拟及可靠性加速实验,确定了器件发生EOS失效的根本原因.并通过优化芯片焊接温度-时间曲... 为了研究电过应力对功率MOSFET可靠性的影响,分别对含有焊料空洞、栅极开路和芯片裂纹缺陷的器件进行失效分析与可靠性研究.利用有限元分析、电路模拟及可靠性加速实验,确定了器件发生EOS失效的根本原因.并通过优化芯片焊接温度-时间曲线和利用开式感应负载测试方法,比较了工艺优化前、后器件抗EOS的能力,结果表明优化后器件的焊料空洞含量显著减少,抗EOS能力得到明显提高. 展开更多
关键词 电过应力 失效分析 MOSFET 芯片焊接 工艺优化
下载PDF
基于GA-QPSO-ELM的边坡位移组合预测
16
作者 傅嘉辉 张夫龙 +1 位作者 张学超 闫少霞 《自动化技术与应用》 2025年第1期53-56,共4页
为了提高水利工程边坡位移预测精度,在QPSO算法寻优过程中引入遗传算法的交叉和变异操作,形成GA-QPSO算法。采用GA-QPSO算法对ELM参数进行优化,建立基于GA-QPSO-ELM的边坡位移组合预测模型,采用实际水利工程的边坡位移监测数据进行仿真... 为了提高水利工程边坡位移预测精度,在QPSO算法寻优过程中引入遗传算法的交叉和变异操作,形成GA-QPSO算法。采用GA-QPSO算法对ELM参数进行优化,建立基于GA-QPSO-ELM的边坡位移组合预测模型,采用实际水利工程的边坡位移监测数据进行仿真分析,并与其他边坡位移预测方法进行对比。结果表明,GA-QPSO-ELM组合模型的平均相对误差为1.186%,预测精度高于其他方法,验证了模型的正确性和优越性。 展开更多
关键词 边坡位移 组合预测 极限学习机 遗传算法 量子粒子群算法
下载PDF
基于EOS-ELM的高频地波雷达有效波高反演 被引量:2
17
作者 张晓愉 楚晓亮 王曙曜 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第S1期163-169,共7页
高频地波雷达(HFSWR)海面回波谱中包含海态信息,通常基于一阶谱和二阶谱特征信息分别建立拟合模型来反演有效波高,但是单独利用一阶和二阶谱信息来反演波高,会分别存在一阶谱能量饱和和二阶谱信噪比低的问题。本文基于集成在线顺序极限... 高频地波雷达(HFSWR)海面回波谱中包含海态信息,通常基于一阶谱和二阶谱特征信息分别建立拟合模型来反演有效波高,但是单独利用一阶和二阶谱信息来反演波高,会分别存在一阶谱能量饱和和二阶谱信噪比低的问题。本文基于集成在线顺序极限学习机(EOS-ELM)的方法,利用高频地波雷达数据,综合考虑一阶谱和二阶谱的特征信息来进行有效波高的反演。学习机能够有效选择一阶谱和二阶谱信息,使结果达到最优化,从而提高有效波高的反演精度。针对低海况的数据,本文通过分析确定波高分类阈值,将数据分段进行波高反演,进一步提高了波高反演的精度。 展开更多
关键词 高频地波雷达 有效波高反演 集成在线顺序极限学习机(eoS-ELM)
下载PDF
Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization 被引量:62
18
作者 Wengang Zhang Chongzhi Wu +2 位作者 Haiyi Zhong Yongqin Li Lin Wang 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第1期469-477,共9页
Accurate assessment of undrained shear strength(USS)for soft sensitive clays is a great concern in geotechnical engineering practice.This study applies novel data-driven extreme gradient boosting(XGBoost)and random fo... Accurate assessment of undrained shear strength(USS)for soft sensitive clays is a great concern in geotechnical engineering practice.This study applies novel data-driven extreme gradient boosting(XGBoost)and random forest(RF)ensemble learning methods for capturing the relationships between the USS and various basic soil parameters.Based on the soil data sets from TC304 database,a general approach is developed to predict the USS of soft clays using the two machine learning methods above,where five feature variables including the preconsolidation stress(PS),vertical effective stress(VES),liquid limit(LL),plastic limit(PL)and natural water content(W)are adopted.To reduce the dependence on the rule of thumb and inefficient brute-force search,the Bayesian optimization method is applied to determine the appropriate model hyper-parameters of both XGBoost and RF.The developed models are comprehensively compared with three comparison machine learning methods and two transformation models with respect to predictive accuracy and robustness under 5-fold cross-validation(CV).It is shown that XGBoost-based and RF-based methods outperform these approaches.Besides,the XGBoostbased model provides feature importance ranks,which makes it a promising tool in the prediction of geotechnical parameters and enhances the interpretability of model. 展开更多
关键词 Undrained shear strength Extreme gradient boosting Random forest Bayesian optimization k-fold CV
下载PDF
Statistical optimization of stress level in Mg-Li-Al alloys upon hot compression testing 被引量:6
19
作者 Rezawana Islam Meysam Haghshenas 《Journal of Magnesium and Alloys》 SCIE EI CAS 2019年第2期203-217,共15页
In the present study,a response optimization method using Extreme Vertices Mixer Design(EVMD)approach is proposed for stress optimization in a thermomechanically processed Mg-Li-Al alloy.Experimentation was planned as... In the present study,a response optimization method using Extreme Vertices Mixer Design(EVMD)approach is proposed for stress optimization in a thermomechanically processed Mg-Li-Al alloy.Experimentation was planned as per mixed design proportions of Mg,Li and Al and process variables(i.e.temperature and strain rate).Each experiment has been performed under different conditions of factors proportions and process variables.The response,particularly stress has been considered for each experiment.The response is optimized to find an optimum condition when the contributing factors influence material characteristics in such a way,to achieve better strength,ductility and corrosion resistance.Estimated regression coefficient table for response has been observed to identify the important factors in this process and significantly high variance inflation factor has been observed.Most importantly,an optimum condition is achieved from this analysis which fulfills the experimental observations and theoretical assumptions. 展开更多
关键词 Mg-Li-Al alloy Design of experiments(DOE) Extreme vertices mixture design(EVMD) Stress optimization
下载PDF
Reactive scheduling of multiple EOSs under cloud uncertainties:model and algorithms 被引量:4
20
作者 WANG Jianjiang HU Xuejun HE Chuan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第1期163-177,共15页
Most earth observation satellites(EOSs)are low-orbit satellites equipped with optical sensors that cannot see through clouds.Hence,cloud coverage,high dynamics,and cloud uncertainties are important issues in the sched... Most earth observation satellites(EOSs)are low-orbit satellites equipped with optical sensors that cannot see through clouds.Hence,cloud coverage,high dynamics,and cloud uncertainties are important issues in the scheduling of EOSs.The proactive-reactive scheduling framework has been proven to be effective and efficient for the uncertain scheduling problem and has been extensively employed.Numerous studies have been conducted on methods for the proactive scheduling of EOSs,including expectation,chance-constrained,and robust optimization models and the relevant solution algorithms.This study focuses on the reactive scheduling of EOSs under cloud uncertainties.First,using an example,we describe the reactive scheduling problem in detail,clarifying its significance and key issues.Considering the two key objectives of observation profits and scheduling stability,we construct a multi-objective optimization mathematical model.Then,we obtain the possible disruptions of EOS scheduling during execution under cloud uncertainties,adopting an event-driven policy for the reactive scheduling.For the different disruptions,different reactive scheduling algorithms are designed.Finally,numerous simulation experiments are conducted to verify the feasibility and effectiveness of the proposed reactive scheduling algorithms.The experimental results show that the reactive scheduling algorithms can both improve observation profits and reduce system perturbations. 展开更多
关键词 earth observation satellite(eoS) uncertainty of clouds reactive scheduling multi-objective optimization EVENT-DRIVEN HEURISTIC
下载PDF
上一页 1 2 60 下一页 到第
使用帮助 返回顶部