期刊文献+
共找到167篇文章
< 1 2 9 >
每页显示 20 50 100
基于PSO-CNN-XGBoost水下柱形装药峰值超压预测 被引量:1
1
作者 刘芳 李士伟 +1 位作者 卢熹 郭策安 《兵工学报》 EI CAS CSCD 北大核心 2024年第5期1602-1612,共11页
为探索水下柱形装药结构、爆距等参数与水下柱形装药峰值超压的关系,将装药样本数据视为二维数据,建立粒子群优化(Particle Swarm Optimization,PSO)算法、一维卷积神经网络(1D Convolutional Neural Network,1DCNN)和极端梯度提升(Extr... 为探索水下柱形装药结构、爆距等参数与水下柱形装药峰值超压的关系,将装药样本数据视为二维数据,建立粒子群优化(Particle Swarm Optimization,PSO)算法、一维卷积神经网络(1D Convolutional Neural Network,1DCNN)和极端梯度提升(Extreme Gradient Boosting,XGBoost)的水下柱形装药峰值超压融合预测算法。采用相关性分析与数据可视化方法,分析装药结构参数、爆距与峰值超压之间的关联关系。设计1DCNN深度网络挖掘不同长径比、爆距等参数与峰值超压之间的纵向时序关系。运用XGBoost算法寻找装药结构参数、爆距与峰值超压之间的横向非线性关系,提升小样本数据的预测精度。使用PSO算法优化1DCNN和XGBoost的超参数,获得最优算法结构。研究结果表明,在包含10种智能算法的对比实验中,PSO-CNN-XGBoost水下柱形装药峰值超压预测算法在精度、稳定性、拟合程度上均高于其他模型。 展开更多
关键词 水下柱形装药 长径比 爆距 峰值超压 粒子群优化算法 一维卷积神经网络 极端梯度提升
下载PDF
基于BiLSTM-XGBoost混合模型的储层岩性识别 被引量:1
2
作者 杜睿山 黄玉朋 +2 位作者 孟令东 张轶楠 周长坤 《计算机系统应用》 2024年第6期108-116,共9页
储层岩性分类是地质研究基础,基于数据驱动的机器学习模型虽然能较好地识别储层岩性,但由于测井数据是特殊的序列数据,模型很难有效提取数据的空间相关性,造成模型对储层识别仍存在不足.针对此问题,本文结合双向长短期循环神经网络(bidi... 储层岩性分类是地质研究基础,基于数据驱动的机器学习模型虽然能较好地识别储层岩性,但由于测井数据是特殊的序列数据,模型很难有效提取数据的空间相关性,造成模型对储层识别仍存在不足.针对此问题,本文结合双向长短期循环神经网络(bidirectional long short-term memory,BiLSTM)和极端梯度提升决策树(extreme gradient boosting decision tree,XGBoost),提出双向记忆极端梯度提升(BiLSTM-XGBoost,BiXGB)模型预测储层岩性.该模型在传统XGBoost基础上融入了BiLSTM,大大增强了模型对测井数据的特征提取能力.BiXGB模型使用BiLSTM对测井数据进行特征提取,将提取到的特征传递给XGBoost分类模型进行训练和预测.将BiXGB模型应用于储层岩性数据集时,模型预测的总体精度达到了91%.为了进一步验证模型的准确性和稳定性,将模型应用于UCI公开的Occupancy序列数据集,结果显示模型的预测总体精度也高达93%.相较于其他机器学习模型,BiXGB模型能准确地对序列数据进行分类,提高了储层岩性的识别精度,满足了油气勘探的实际需要,为储层岩性识别提供了新的方法. 展开更多
关键词 神经网络 机器学习 测井数据 岩性分类 BiLSTM xgboost
下载PDF
结合SVM与XGBoost的链式多路径覆盖测试用例生成
3
作者 钱忠胜 俞情媛 +3 位作者 张丁 姚昌森 秦朗悦 成轶伟 《软件学报》 EI CSCD 北大核心 2024年第6期2795-2820,共26页
机器学习方法可很好地与软件测试相结合,增强测试效果,但少有学者将其运用于测试数据生成方面.为进一步提高测试数据生成效率,提出一种结合SVM(support vector machine)和XGBoost(extreme gradient boosting)的链式模型,并基于此模型借... 机器学习方法可很好地与软件测试相结合,增强测试效果,但少有学者将其运用于测试数据生成方面.为进一步提高测试数据生成效率,提出一种结合SVM(support vector machine)和XGBoost(extreme gradient boosting)的链式模型,并基于此模型借助遗传算法实现多路径测试数据生成.首先,利用一定样本训练若干个用于预测路径节点状态的子模型(SVM和XGBoost),通过子模型的预测精度值筛选最优子模型,并根据路径节点顺序将其依次链接,形成一个链式模型C-SVMXGBoost(chained SVM and XGBoost).在利用遗传算法生成测试用例时,使用训练好的链式模型代替插桩法获取测试数据覆盖路径(预测路径),寻找预测路径与目标路径相似的路径集,对存在相似路径集的预测路径进行插桩验证,获取精确路径,计算适应度值.在交叉变异过程中引入样本集中路径层级深度较大的优秀测试用例进行重用,生成覆盖目标路径的测试数据.最后,保留进化生成中产生的适应度较高的个体,更新链式模型C-SVMXGBoost,进一步提高测试效率.实验表明,C-SVMXGBoost较其他各对比链式模型更适合解决路径预测问题,可提高测试效率.并且通过与已有经典方法相比,所提方法在覆盖率上提高可达15%,平均进化代数也有所降低,在较大规模程序上其降低百分比可达65%. 展开更多
关键词 测试用例 SVM xgboost 链式模型 多路径覆盖
下载PDF
基于WOA-VMD-XGBoost的混凝土坝变形预测
4
作者 常留红 李晨玉 +3 位作者 曾子彬 尹光景 赵芃芃 薛雄 《水利水运工程学报》 CSCD 北大核心 2024年第3期146-157,共12页
建立混凝土坝高精准变形预测模型是掌握坝体结构服役性态的关键,而其变形监测数据具有复杂的非线性和非平稳特征,会影响预测模型的精度及泛化能力。针对上述问题,引入鲸鱼优化算法(WOA)和包络熵理论自适应寻优变分模态分解(VMD)参数,根... 建立混凝土坝高精准变形预测模型是掌握坝体结构服役性态的关键,而其变形监测数据具有复杂的非线性和非平稳特征,会影响预测模型的精度及泛化能力。针对上述问题,引入鲸鱼优化算法(WOA)和包络熵理论自适应寻优变分模态分解(VMD)参数,根据最佳参数组合多尺度分解变形数据,得到多个不同特征尺度的本征模态函数(IMF)。通过重构分量为新分量,将新分量分别输入极端梯度提升(XGBoost)模型中进行预测,叠加各预测结果得到最终预测值。基于山口岩碾压混凝土拱坝变形监测数据,开展支持向量回归机(SVR)、随机森林(RF)、XGBoost、WOA-VMD-XGBoost等4种模型的精度、泛化能力对比研究。结果表明:相比于单一预测模型,组合模型有效挖掘了变形信号多尺度特征,降低了非线性、非平稳性对模型性能的影响,在精度、泛化能力中表现出更高性能。该组合模型为大坝变形监测提供了理论依据和应用参考。 展开更多
关键词 混凝土坝 变形预测 鲸鱼优化算法 包络熵 变分模态分解 极端梯度提升
下载PDF
基于SC-XGBoost的电站燃煤低位发热量软测量方法
5
作者 乔世超 王轶男 +4 位作者 吕佳阳 陈衡 刘涛 徐钢 翟融融 《煤炭科学技术》 EI CAS CSCD 北大核心 2024年第S01期332-340,共9页
随着国家大力推进能源供给侧结构性改革,新能源装机容量不断提升,电力市场竞争愈加激烈。另一方面,全球煤炭市场的复杂多变,导致以煤炭为能量来源的发电企业成本上涨。燃煤发热量是衡量煤质的重要评价标准之一,也是采购煤炭最重要的依据... 随着国家大力推进能源供给侧结构性改革,新能源装机容量不断提升,电力市场竞争愈加激烈。另一方面,全球煤炭市场的复杂多变,导致以煤炭为能量来源的发电企业成本上涨。燃煤发热量是衡量煤质的重要评价标准之一,也是采购煤炭最重要的依据,对燃煤发热量进行准确预测能够有效地控制电厂运行采购成本。为了实现燃煤发热量的高效预测,采用Pearson系数对相关变量进行特征选取,采用基于密度的噪点空间聚类(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)算法对某电厂自备煤厂近2年1733条化验数据进行去噪,对去噪后数据进行谱聚类(Spectral Clustering,SC)分析。将分类后的子样本集采用极致梯度提升(Extreme Gradient Boosting,XGBoost)算法分别建立预测模型,并与最小二乘法回归(Ordinary Least Squares,OLS)、支持向量机(Support Vector Machines,SVM)模型进行性能比较。结果表明,基于XGBoost的电站燃煤发热量预测模型相较于其他算法准确性有明显提升,泛化能力更强。对经过SC算法分类后的燃煤分别建立预测模型能够进一步提高模型的精细化水平,为燃煤电站发热量预测提供一种可靠高效的方法。 展开更多
关键词 低位发热量 机器学习 谱聚类 极致梯度提升(xgboost) 软测量
下载PDF
基于遗传算法优化XGBoost模型的地铁乘客出站走行时间预测
6
作者 郭凯旋 肖梅 +1 位作者 刘宇 张皓 《科学技术与工程》 北大核心 2024年第18期7851-7858,共8页
地铁乘客出站走行时间的预测是城市交通运行和管理的重要依据,对其进行准确预测有助于缓解地铁拥堵、优化地铁服务和提高乘客满意度。为了准确预测地铁乘客出站走行时间,首先,基于视频分析软件从监控视频中提取了乘客出站时的走行时间... 地铁乘客出站走行时间的预测是城市交通运行和管理的重要依据,对其进行准确预测有助于缓解地铁拥堵、优化地铁服务和提高乘客满意度。为了准确预测地铁乘客出站走行时间,首先,基于视频分析软件从监控视频中提取了乘客出站时的走行时间和若干特征变量。其次,为了筛选出对走行时间有显著影响的因素,采用相关性分析和最优尺度回归模型进行影响因素分析,并使用遗传算法进行最优特征组合的提取。最终,将提取出的特征作为输入向量,使用极端梯度提升模型(extreme gradient boosting,XGBoost)进行走行时间的预测,并以平均绝对误差等作为评价指标。实验结果表明,本文提出的方法在地铁乘客出站行为预测方面具有较好的效果,平均绝对误差为1.55 s,低于未优化的极端梯度提升模型(1.87 s)、支持向量机(2.03 s)和随机森林(1.96 s)等模型。 展开更多
关键词 遗传算法 极端梯度提升模型 走行时间预测 特征提取
下载PDF
基于PCA-GA-XGBoost模型的吉林省水资源 承载力评价 被引量:2
7
作者 庞博文 李治军 《人民珠江》 2024年第4期98-106,共9页
为了提高水资源承载力评价的效率和准确性,提出了一种基于主成分分析(PCA)、遗传算法(GA)和极限梯度提升树(XGBoost)的指标评价模型。定义了以水资源、社会经济、生态环境为子系统的14项评价指标;采用主成分分析法对评价指标进行降维处... 为了提高水资源承载力评价的效率和准确性,提出了一种基于主成分分析(PCA)、遗传算法(GA)和极限梯度提升树(XGBoost)的指标评价模型。定义了以水资源、社会经济、生态环境为子系统的14项评价指标;采用主成分分析法对评价指标进行降维处理;基于梯度提升决策树对吉林省2011—2021年的水资源承载力进行评价分析,并利用遗传算法对极限梯度提升树中4个参数进行优化。结果表明:经主成分分析简化评价指标后,PCA-GA-XGBoost模型的相关系数等指标均优于GA-BP、GA-SVM、GA-XGBoost和XGBoost;2011—2021年吉林省水资源承载力位于0.192~0.724,为先上升后下降再上升趋势,承载力状况逐年改善;利用模型内置的特征值重要度排序功能,识别得出重要度最大的指标为每公顷化肥施用量(0.5307),是影响吉林省水资源承载力的关键因素。 展开更多
关键词 主成分分析 遗传算法 极限梯度提升树 水资源承载力 吉林省
下载PDF
基于WKPCA与IEDO-XGBoost的变压器故障诊断方法研究
8
作者 张容槟 徐耀松 牛元平 《电工电能新技术》 CSCD 北大核心 2024年第10期24-42,共19页
针对变压器故障的特点,将加权核主成分分析技术与IEDO-XGBoost相结合,提出了一种新的变压器故障诊断模型。该方法主要将溶解气体分析技术与无编码比值法相结合,获取变压器的故障特征,利用WKPCA对其进行降维处理,并将归一化处理后的故障... 针对变压器故障的特点,将加权核主成分分析技术与IEDO-XGBoost相结合,提出了一种新的变压器故障诊断模型。该方法主要将溶解气体分析技术与无编码比值法相结合,获取变压器的故障特征,利用WKPCA对其进行降维处理,并将归一化处理后的故障样本数据作为IEDO-XGBoost模型的输入,输出变压器故障诊断类型及其诊断准确率。选取20维变压器故障特征数据进行WKPCA降维处理,加快了模型的收敛速度;采用自适应正余弦策略和高斯变异策略对指数分布优化器算法进行改进,并用10个典型测试函数对改进后的指数分布优化算法性能进行了测试,结果表明改进后的指数分布优化算法具有更快的收敛速度和全局搜索能力。然后,利用改进的指数分布算法来确定XGBoost模型中的多个最优参数。仿真结果表明,该模型的诊断准确率为91.82%,分别比EDO-XGBoost、NGO-XGBoost、GJO-XGBoost、GWO-XGBoost和WOA-XGBoost故障诊断模型高2.73%、3.64%、5.46%、8.18%和10.91%,验证了本文所提方法能够有效提高变压器故障诊断性能。 展开更多
关键词 变压器 加权核主成分分析 故障诊断 溶解气体分析 指数分布优化算法 极端梯度提升
下载PDF
井下动态环境基于DAE的XGBoost自适应定位算法研究
9
作者 洪金祥 崔丽珍 窦占树 《传感器与微系统》 CSCD 北大核心 2024年第10期23-26,30,共5页
针对煤矿井下高动态环境导致WiFi定位模型的精度降低的问题,提出极端梯度提升(XGBoost)的指纹定位算法,利用其高维数据特征的学习能力完成定位。与传统的梯度提升树(GBDT)算法相比,在完成更好定位效果的同时,速度也大大提升。同时针对W... 针对煤矿井下高动态环境导致WiFi定位模型的精度降低的问题,提出极端梯度提升(XGBoost)的指纹定位算法,利用其高维数据特征的学习能力完成定位。与传统的梯度提升树(GBDT)算法相比,在完成更好定位效果的同时,速度也大大提升。同时针对WiFi数据的波动性和XGBoost算法面对动态环境模型漂移问题,分别提出融合降噪自编码器(DAE)和自适应机制的D-XGBoost算法和Z-XGBoost算法。实验结果表明:XGBoost算法的定位精度比GBDT算法提高了,效率提高了5倍多。融合DAE的D-XG-Boost算法的定位准确率比XGBoost算法提高了17%;融合了自适应机制的Z-XGBoost算法有效降低了模型漂移造成的误差。所提改进算法更好地改善了WiFi定位模型精度降低和模型漂移问题。 展开更多
关键词 极端梯度提升 井下指纹定位 模型漂移 降噪自编码器 误差补偿
下载PDF
基于改进XGBoost的金融客户投资行为特征选择方法
10
作者 吴成英 马东方 《计算机应用》 CSCD 北大核心 2024年第S01期330-336,共7页
金融客户投资购买行为是投资者动态购买理财产品交易决策的综合结果,受到客户自身属性、产品因素、行情信息和历史交易等多个不同因素的影响,原始因子属性的特征维度庞大、拟合风险偏高。现有研究主要通过不同的算法提高特征选择的准确... 金融客户投资购买行为是投资者动态购买理财产品交易决策的综合结果,受到客户自身属性、产品因素、行情信息和历史交易等多个不同因素的影响,原始因子属性的特征维度庞大、拟合风险偏高。现有研究主要通过不同的算法提高特征选择的准确率,忽略了不同群体的差异化特征及动态因素的影响。因此,提出一种改进XGBoost(eXtreme Gradient Boosting)的特征选择算法,并在金融客户投资行为上应用研究。针对客户群体投资行为的差异性,多维度综合量化分析投资行为,以解决单一投资行为指标不合理问题;对不同客户群体通过主成分分析(PCA)降维和优化的K-均值(K-means)聚类算法进行多属性融合聚类,然后分别对聚类后的不同群体使用改进XGBoost进行多分类预测,并通过修剪特征因子提升预测准确率。实验结果表明,使用改进XGBoost后,金融客户投资行为的特征因子维度更贴近实际,准确率更高。 展开更多
关键词 特征选择 xgboost 多类别分类 主成分分析 K-MEANS聚类 投资行为
下载PDF
基于NNTR-SMOTE与GA-XGBoost的变压器故障诊断方法研究 被引量:1
11
作者 汪李忠 池建飞 +3 位作者 丁叶强 姚海燕 唐志鹏 吴同宇 《综合智慧能源》 2024年第1期84-93,共10页
针对变压器故障诊断中故障样本数量少且分布不均衡导致诊断率低的问题,提出了一种基于最近邻三角区域合成少数类过采样(NNTR-SMOTE)与利用遗传算法(GA)优化极端梯度提升(XGBoost)模型的变压器故障诊断方法。首先,将采集到的变压器故障... 针对变压器故障诊断中故障样本数量少且分布不均衡导致诊断率低的问题,提出了一种基于最近邻三角区域合成少数类过采样(NNTR-SMOTE)与利用遗传算法(GA)优化极端梯度提升(XGBoost)模型的变压器故障诊断方法。首先,将采集到的变压器故障样本数据进行标准化处理,使用NNTR-SMOTE方法得到平衡数据;其次,采用无编码比值法构造油中溶解气体的特征,得到特征数据集并对特征数据集采用多维尺度分析(MDS)方法进行特征融合;最后,利用GA对XGBoost模型的参数进行优化,构建变压器故障诊断模型。试验结果表明:基于NNTR-SMOTE与GA-XGBoost的变压器故障诊断方法诊断准确率达95.97%,不仅解决了诊断模型对多数类的偏向问题,还将模型的诊断精度进一步提高,适用于变压器非均衡数据集的多分类故障诊断。 展开更多
关键词 变压器 故障诊断 不平衡小样本 极端梯度提升 遗传算法
下载PDF
基于ISSA-XGBoost的毕赤酵母菌发酵软测量
12
作者 沈瑶 张立刚 王建扬 《传感器与微系统》 CSCD 北大核心 2024年第8期122-125,共4页
针对毕赤酵母菌发酵过程菌体浓度难以在线检测,离线测量又存在极易染菌导致数据集不完整等问题,提出了一种基于改进麻雀搜索算法(ISSA)优化极致梯度提升(XGBoost)的软测量建模方法。首先,利用主成分分析(PCA)算法对样本数据进行主元分析... 针对毕赤酵母菌发酵过程菌体浓度难以在线检测,离线测量又存在极易染菌导致数据集不完整等问题,提出了一种基于改进麻雀搜索算法(ISSA)优化极致梯度提升(XGBoost)的软测量建模方法。首先,利用主成分分析(PCA)算法对样本数据进行主元分析,降低噪声和冗余度;然后,在标准麻雀算法(SSA)中引入自适应超参数和混合变异策略,增强了算法跳出局部极值和全局搜索的能力;最后,构建菌体浓度的ISSA-XGBoost软测量模型,并与XGBoost、SSA-XGBoost模型进行比较。仿真实验结果表明:ISSA-XGBoost模型的均方根误差(RMSE)、平均相对误差(MRE)均比XGBoost、SSA-XGBoost模型低,且ISSA-XGBoost的决定系数(R^(2))更接近于1,说明预测精度明显优于改进前,能够满足对毕赤酵母菌发酵过程菌体浓度的实时测量。 展开更多
关键词 毕赤酵母 麻雀算法 极致梯度提升 软测量模型
下载PDF
基于α-shape与SSA-XGBoost算法的无人机点云孔洞修补
13
作者 宋晓辉 吕富强 +2 位作者 窦彩英 唐诗华 党梦鑫 《海洋测绘》 CSCD 北大核心 2024年第4期69-73,共5页
针对极限梯度提升树算法在进行无人机点云孔洞修补时核心超参数难以选取、点云孔洞修补范围识别困难以及孔洞修补精度较低等问题,提出基于麻雀搜索算法优化极限梯度提升树的点云孔洞修补方法。首先利用α-shape算法进行点云的孔洞识别,... 针对极限梯度提升树算法在进行无人机点云孔洞修补时核心超参数难以选取、点云孔洞修补范围识别困难以及孔洞修补精度较低等问题,提出基于麻雀搜索算法优化极限梯度提升树的点云孔洞修补方法。首先利用α-shape算法进行点云的孔洞识别,在此基础上,获取点云孔洞和周围点云的位置信息并将其作为模型的输入样本。再利用麻雀搜索算法优化极限梯度提升树算法中的核心超参数,构建SSA-XGBoost点云孔洞修补模型,并将该模型应用于无人机点云孔洞的修补中。最后将SSA-XGBoost与XGBoost、BP神经网络两组算法进行预测精度的对比。实验结果表明:SSA-XGBoost模型的预测结果相较于其它两组对比算法预测精度更高,在点云孔洞修补方面具有一定的意义。 展开更多
关键词 摄影测量 孔洞修补 α-shape算法 麻雀搜索算法 极限梯度提升树
下载PDF
在线医药电商评论情感分析——基于XGBoost集成加权词向量和大语言模型的情感识别模型
14
作者 田梦影 时维 《科技和产业》 2024年第9期128-135,共8页
消费者评论是考察消费者情感的重要数据源,对商品评论进行数据挖掘是帮助在线医药电商改善经营的重要途径。立足于在线医药电商的用户评论,基于SO-PMI(情感倾向点互信息)算法构建该领域情感词典,对评论词向量进行情感加权。利用XGBoost... 消费者评论是考察消费者情感的重要数据源,对商品评论进行数据挖掘是帮助在线医药电商改善经营的重要途径。立足于在线医药电商的用户评论,基于SO-PMI(情感倾向点互信息)算法构建该领域情感词典,对评论词向量进行情感加权。利用XGBoost(极限梯度提升树)集成词向量和LLM(大语言模型)构建情感识别模型,最后得出评论情感指数,从多个维度展开,分析消费者评论中的情感趋势。实证分析表明,构建的情感识别模型的AUC(曲线下的面积)等验证指标较LLM模型相比有进一步提升,具有一定的应用价值。 展开更多
关键词 在线医药电商 LLM(大语言模型) xgboost(极限梯度提升树)算法 情感指数 情感识别
下载PDF
基于XGBoost算法构建的ICU死亡风险预测模型的系统评价
15
作者 张黄鑫 周微微 +2 位作者 刘兰 韦皓 刘梦婕 《中国医疗设备》 2024年第10期111-119,138,共10页
目的系统评价基于极端梯度提升(eXtreme Gradient Boosting,XGBoost)算法构建的重症加强护理病房(Intensive Care Unit,ICU)死亡风险预测模型的研究现况。方法检索知网、万方、维普、PubMed、Embase、Web of Science、Scopus数据库,搜... 目的系统评价基于极端梯度提升(eXtreme Gradient Boosting,XGBoost)算法构建的重症加强护理病房(Intensive Care Unit,ICU)死亡风险预测模型的研究现况。方法检索知网、万方、维普、PubMed、Embase、Web of Science、Scopus数据库,搜集有关基于XGBoost算法构建的ICU死亡风险预测模型的研究,检索时限均为建库至2023年2月18日。由2名研究者独立筛选文献,提取资料并评价纳入研究的偏倚风险后,进行定性系统评价。结果共纳入12篇文献,纳入模型的受试者工作特征曲线下面积为0.750~0.941。10篇文献适用性较好,其余2篇文献适用性不清楚。12篇文献均存在高偏倚风险,偏倚主要来自于不合适的研究数据来源、研究对象的纳排标准不清晰、预测因子定义与评估不一致、基于单因素分析法筛选预测因子、缺乏完善的模型性能评估等。结论现有基于XGBoost算法构建的ICU死亡风险预测模型具有较好的区分度,但其临床预测的准确性还尚不明确。未来还需进一步完善相关研究设计,避免研究中的各类偏倚风险,加强模型的外部验证,确保模型在临床实践中的可行性及有效性。 展开更多
关键词 极端梯度提升算法 重症加强护理病房 死亡风险预测模型 机器学习 系统评价 预测模型偏倚风险评估工具
下载PDF
基于XGBoost的中法海洋卫星微波散射计海冰密集度反演研究
16
作者 牟晓恒 羊丽青 林文明 《海洋气象学报》 2024年第4期64-75,共12页
海冰密集度是监测海冰的重要要素之一,其时间变化和空间分布对于全球气候变化研究、航线规划和冰区作业等方面具有重要意义。中法海洋卫星(China-France Oceanography SATellite,CFOSAT)微波散射计(SCATterometer,简记为“CSCAT”)凭借... 海冰密集度是监测海冰的重要要素之一,其时间变化和空间分布对于全球气候变化研究、航线规划和冰区作业等方面具有重要意义。中法海洋卫星(China-France Oceanography SATellite,CFOSAT)微波散射计(SCATterometer,简记为“CSCAT”)凭借扇形波束旋转扫描的特点,可在单个网格内获得含有丰富入射角和方位角信息的多次观测样本,这为海冰密集度的准确反演创造了条件。考虑到目前尚未明确散射计测量要素与海冰密集度之间的定量关系,因此本文构建了利用CSCAT后向散射系数及其他观测要素进行海冰密集度反演的机器学习模型。首先,通过海洋和海冰卫星应用设施(Ocean and Sea Ice Satellite Application Facility,OSI SAF)所提供的微波辐射计海冰密集度产品与CSCAT后向散射系数匹配,得到用于海冰密集度反演的数据集。其次,利用XGBoost(eXtreme Gradient Boosting)机器学习算法构建基于CSCAT后向散射系数数据的海冰密集度反演模型。再次,对模型在不同季节、不同极区下的反演结果精度及实际空间分布特征进行了分析。南北两极对比结果表明,模型在北极海冰密集度反演上的表现优于南极,而不同季节对比结果表明,冬季海冰密集度模型反演误差最小。不同海冰密集度下的模型表现也存在一定差异,即当海冰密集度较高时,模型反演结果存在低估情况,网格为纯海水覆盖时,模型有时会错分为海冰。整体来看,虽然利用散射计后向散射系数直接进行海冰密集度反演与辐射计结果相比一致性有一定差异,但研究结果为海冰密集度反演提供了一种新的可能性。 展开更多
关键词 中法海洋卫星(CFOSAT) 散射计 海冰密集度(SIC) 海冰范围 xgboost算法
下载PDF
基于RFE-BXGBoost的轴承套圈沟道表面缺陷识别方法 被引量:2
17
作者 徐凯 张会妨 《机电工程》 CAS 北大核心 2023年第11期1691-1699,共9页
轴承套圈是轴承部件的重要组成部分,其表面缺陷影响轴承的服役期限。为了解决轴承沟道表面缺陷难以被准确识别的问题,提出了一种基于特征递归消除的贝叶斯极度梯度提升树(RFE-BXGBoost)的轴承套圈沟道表面缺陷识别模型(方法)。首先,基... 轴承套圈是轴承部件的重要组成部分,其表面缺陷影响轴承的服役期限。为了解决轴承沟道表面缺陷难以被准确识别的问题,提出了一种基于特征递归消除的贝叶斯极度梯度提升树(RFE-BXGBoost)的轴承套圈沟道表面缺陷识别模型(方法)。首先,基于特征衍生的思想,对轴承沟道的时域、频域等特征进行了提取,使用了极度梯度提升树(XGBoost)作为基于特征递归消除(RFE)的基学习器,对影响轴承沟道表面缺陷最佳特征子集进行了选择,并过滤了冗余特征;然后,利用基于贝叶斯优化的XGBoost模型组成弱分类器,为了降低模型预测结果的方差,使用有放回随机抽样法,对基分类器进行了选取;最后,根据抽样结果,利用投票法获得了最终的表面缺陷识别结果,并使用轴承套圈沟道实测数据集进行了模型预测性能的测试。实验结果表明:基于RFE-BXGBoost的表面缺陷识别模型的识别准确率为0.90,F1-score为0.879,优于仅使用自适应提升法(Adaboost)、随机森林、梯度提升树的表面缺陷识别结果。研究结果表明:该表面缺陷识别模型对复杂零部件和系统的表面缺陷识别有一定的效果。 展开更多
关键词 滚动轴承 特征递归消除 极度梯度提升树 轴承套圈沟道 有放回随机抽样 集成模型
下载PDF
群智能算法优化XGBoost的信贷风险预测 被引量:1
18
作者 朱丽华 龙海侠 《计算机工程与应用》 CSCD 北大核心 2023年第23期305-310,共6页
为改善极端梯度提升(extreme gradient boosting,XGBoost)集成算法的信贷风险预测准确率,提出了一种改进的麻雀算法(improved sparrow search algorithm based on golden sine search,Cauchy mutation and oppositionbased learning,GCO... 为改善极端梯度提升(extreme gradient boosting,XGBoost)集成算法的信贷风险预测准确率,提出了一种改进的麻雀算法(improved sparrow search algorithm based on golden sine search,Cauchy mutation and oppositionbased learning,GCOSSA)来优化XGBoost参数。采用黄金正弦搜索策略来更新发现者位置,既增强全局搜索能力又增强局部搜索能力;在算法中引入反向学习策略和柯西变异进行扰动来扩大搜索领域改善陷入局部最优,同时使用贪婪规则确定最优解;将改进的算法用6个基准函数进行测试,并对SSA和GCOSSA进行对比,评估GCOSSA寻优性能;用GCOSSA优化XGBoost参数。在数据集上测试,并与网格搜索寻优、SSA及其混合正余弦改进算法(improved sparrow search algorithm based on sine and cosine,ISSA)方法进行对比。结果表明改进后的GCOSSA优化XGBoost参数,在信贷风险预测中准确率更高。 展开更多
关键词 麻雀搜索算法 黄金正弦搜索 反向学习 柯西变异 极端梯度提升(xgboost)
下载PDF
结合振动特征优选和GWOA-XGBoost的电机轴承故障诊断 被引量:5
19
作者 于飞 樊清川 宣敏 《国防科技大学学报》 EI CAS CSCD 北大核心 2023年第3期99-107,共9页
为解决电机轴承故障状态难以识别,从而造成诊断精度不高的情况,提出了一种基于信号特征提取与极限梯度提升算法(extreme gradient boosting,XGBoost)结合的电机轴承故障诊断模型。使用优化的变分模态分解获得振动信号的固有模态函数(int... 为解决电机轴承故障状态难以识别,从而造成诊断精度不高的情况,提出了一种基于信号特征提取与极限梯度提升算法(extreme gradient boosting,XGBoost)结合的电机轴承故障诊断模型。使用优化的变分模态分解获得振动信号的固有模态函数(intrinsic mode function,IMF)分量,再基于多尺度熵理论计算各IMF分量的多尺度熵值进行特征重构。在鲸鱼优化算法(whale optimization algorithm,WOA)中引入遗传算法的选择、交叉、变异操作对WOA进行改进。用改进的WOA算法对XGBoost的超参数进行寻优,获得了帮助XGBoost取得最优分类效果的超参数组合,将7种不同故障类型的振动信号进行重构后输入优化的XGBoost模型进行故障诊断。实验结果表明,所提GWOA-XGBoost模型的电机轴承故障诊断精度能够达到97.14%,相较于传统诊断方法,性能提升效果显著。 展开更多
关键词 电机轴承 故障诊断 变分模态分解 鲸鱼优化算法 极限梯度提升
下载PDF
基于改进XGBoost超参数优化的地下工程空调系统负荷预测 被引量:3
20
作者 冯增喜 陈海越 +2 位作者 王涛 赵锦彤 李诗妍 《计算机与现代化》 2023年第1期108-113,共6页
针对地下工程空调负荷难以精确预测的问题,提出一种基于天牛须搜索算法(Beetle Antennae Search,BAS)优化极限梯度提升算法(eXtreme Gradient Boosting,XGBoost)的负荷预测模型。该算法通过引入典型最优解引导机制优化常规BAS算法中的... 针对地下工程空调负荷难以精确预测的问题,提出一种基于天牛须搜索算法(Beetle Antennae Search,BAS)优化极限梯度提升算法(eXtreme Gradient Boosting,XGBoost)的负荷预测模型。该算法通过引入典型最优解引导机制优化常规BAS算法中的位置更新策略,同时采用线性递减策略对天牛的搜索步长进行修正,以实现更快达到全局最优点,提高收敛速度;并利用改进的BAS算法对XGBoost中的决策树个数、树的最大深度2个对模型预测精度有较大影响的超参数进行寻优,以获得XGBoost的最优参数组合,提高模型预测精度。最后,以某地下保障工程空调系统为研究对象,验证所提出的预测模型的有效性。 展开更多
关键词 地下工程 负荷预测 极限梯度提升 改进天牛须搜索算法
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部