期刊文献+
共找到344篇文章
< 1 2 18 >
每页显示 20 50 100
Modeling of Total Dissolved Solids (TDS) and Sodium Absorption Ratio (SAR) in the Edwards-Trinity Plateau and Ogallala Aquifers in the Midland-Odessa Region Using Random Forest Regression and eXtreme Gradient Boosting
1
作者 Azuka I. Udeh Osayamen J. Imarhiagbe Erepamo J. Omietimi 《Journal of Geoscience and Environment Protection》 2024年第5期218-241,共24页
Efficient water quality monitoring and ensuring the safety of drinking water by government agencies in areas where the resource is constantly depleted due to anthropogenic or natural factors cannot be overemphasized. ... Efficient water quality monitoring and ensuring the safety of drinking water by government agencies in areas where the resource is constantly depleted due to anthropogenic or natural factors cannot be overemphasized. The above statement holds for West Texas, Midland, and Odessa Precisely. Two machine learning regression algorithms (Random Forest and XGBoost) were employed to develop models for the prediction of total dissolved solids (TDS) and sodium absorption ratio (SAR) for efficient water quality monitoring of two vital aquifers: Edward-Trinity (plateau), and Ogallala aquifers. These two aquifers have contributed immensely to providing water for different uses ranging from domestic, agricultural, industrial, etc. The data was obtained from the Texas Water Development Board (TWDB). The XGBoost and Random Forest models used in this study gave an accurate prediction of observed data (TDS and SAR) for both the Edward-Trinity (plateau) and Ogallala aquifers with the R<sup>2</sup> values consistently greater than 0.83. The Random Forest model gave a better prediction of TDS and SAR concentration with an average R, MAE, RMSE and MSE of 0.977, 0.015, 0.029 and 0.00, respectively. For the XGBoost, an average R, MAE, RMSE, and MSE of 0.953, 0.016, 0.037 and 0.00, respectively, were achieved. The overall performance of the models produced was impressive. From this study, we can clearly understand that Random Forest and XGBoost are appropriate for water quality prediction and monitoring in an area of high hydrocarbon activities like Midland and Odessa and West Texas at large. 展开更多
关键词 Water Quality Prediction Predictive Modeling Aquifers Machine Learning Regression extreme gradient boosting
下载PDF
Object-Based Burned Area Mapping with Extreme Gradient Boosting Using Sentinel-2 Imagery
2
作者 Dimitris Stavrakoudis Ioannis Z. Gitas 《Journal of Geographic Information System》 2023年第1期53-72,共20页
The Sentinel-2 satellites are providing an unparalleled wealth of high-resolution remotely sensed information with a short revisit cycle, which is ideal for mapping burned areas both accurately and timely. This paper ... The Sentinel-2 satellites are providing an unparalleled wealth of high-resolution remotely sensed information with a short revisit cycle, which is ideal for mapping burned areas both accurately and timely. This paper proposes an automated methodology for mapping burn scars using pairs of Sentinel-2 imagery, exploiting the state-of-the-art eXtreme Gradient Boosting (XGB) machine learning framework. A large database of 64 reference wildfire perimeters in Greece from 2016 to 2019 is used to train the classifier. An empirical methodology for appropriately sampling the training patterns from this database is formulated, which guarantees the effectiveness of the approach and its computational efficiency. A difference (pre-fire minus post-fire) spectral index is used for this purpose, upon which we appropriately identify the clear and fuzzy value ranges. To reduce the data volume, a super-pixel segmentation of the images is also employed, implemented via the QuickShift algorithm. The cross-validation results showcase the effectiveness of the proposed algorithm, with the average commission and omission errors being 9% and 2%, respectively, and the average Matthews correlation coefficient (MCC) equal to 0.93. 展开更多
关键词 Operational Burned Area Mapping Sentinel-2 extreme gradient boosting (XGB) QuickShift Segmentation Machine Learning
下载PDF
基于随机森林和XGBoost算法构建心脏骤停患者自主循环恢复后神经功能预后不良的风险预测模型 被引量:1
3
作者 桑珍珍 崔杰 +2 位作者 闫寒 王维峰 庞秀艳 《中国急救医学》 CAS CSCD 2024年第7期577-585,共9页
目的 利用机器学习算法构建预测心脏骤停(CA)患者自主循环恢复(ROSC)后神经功能预后不良的预测模型,探索结局相关因子。方法 回顾性收集2016年1月至2024年1月沧州市中心医院收治的CA行心肺复苏(CPR)后ROSC的患者481例为研究对象。收集... 目的 利用机器学习算法构建预测心脏骤停(CA)患者自主循环恢复(ROSC)后神经功能预后不良的预测模型,探索结局相关因子。方法 回顾性收集2016年1月至2024年1月沧州市中心医院收治的CA行心肺复苏(CPR)后ROSC的患者481例为研究对象。收集患者临床资料,根据患者转出重症监护病房(ICU)时的格拉斯哥-匹兹堡脑功能表现分级(CPC)评分,将其分为预后良好组(GNO,n=158)和预后不良组(PNO,n=323)。481例患者按7∶3随机分为训练集(n=338)和测试集(n=143),训练集用于构建模型,测试集用评价模型效能。利用极端梯度提升(XGBoost)和随机森林(RF)两种机器学习算法构建患者神经功能预后不良的预测模型,分别得出影响患者神经功能预后的变量,应用SHAP进行XGBoost模型可解释性分析。将XGBoost和RF算法得出的变量取交集,再将交集变量进行多因素Logistic回归分析,得到差异有统计学意义的变量,进而构建决策树模型。在训练集和测试集上利用受试者工作特征(ROC)曲线和曲线下面积(AUC)评估决策树模型的预测性能。结果 通过XGBoost模型得到与神经功能预后不良相关的变量15个,RF模型得到与神经功能预后不良相关的变量14个,两种模型取交集得到11个与神经功能预后不良相关的交集变量[视神经鞘直径(ONSD)变化率、神经元特异性烯醇化酶(NSE)、入ICU第3天ONSD(ONSD day3)、心脏骤停至心肺复苏(CA-CPR)时间、ROSC时间、急性生理学与慢性健康状况评价Ⅱ(APACHEⅡ)评分、血肌酐、白蛋白、住ICU时间、血乳酸及年龄]。将这11个交集变量进行多因素Logistic回归分析,结果显示,PNO组与GNO组ONSD变化率、NSE、ONSD day3、ROSC时间及年龄这5个变量差异有统计学意义(P<0.05)。用这5个重要变量构建决策树模型,得出3个与患者神经功能预后不良最相关的变量(NSE、ROSC时间及ONSD变化率),在训练集上的决策树模型预测CA行CPR后ROSC患者神经功能预后不良的AUC为0.857(95%CI 0.809~0.903,P<0.001),在测试集上的AUC为0.834 (95%CI 0.761~0.906,P<0.001)。结论 基于XGBoost和RF这2种机器学习方法构建的决策树模型能够更准确地评估CA患者ROSC后神经功能的不良预后,且评价指标可能简化为NSE、ROSC时间及ONSD变化率。 展开更多
关键词 心脏骤停 自主循环恢复 神经功能 预测模型 随机森林 极端梯度提升
下载PDF
基于PSO-CNN-XGBoost水下柱形装药峰值超压预测 被引量:1
4
作者 刘芳 李士伟 +1 位作者 卢熹 郭策安 《兵工学报》 EI CAS CSCD 北大核心 2024年第5期1602-1612,共11页
为探索水下柱形装药结构、爆距等参数与水下柱形装药峰值超压的关系,将装药样本数据视为二维数据,建立粒子群优化(Particle Swarm Optimization,PSO)算法、一维卷积神经网络(1D Convolutional Neural Network,1DCNN)和极端梯度提升(Extr... 为探索水下柱形装药结构、爆距等参数与水下柱形装药峰值超压的关系,将装药样本数据视为二维数据,建立粒子群优化(Particle Swarm Optimization,PSO)算法、一维卷积神经网络(1D Convolutional Neural Network,1DCNN)和极端梯度提升(Extreme Gradient Boosting,XGBoost)的水下柱形装药峰值超压融合预测算法。采用相关性分析与数据可视化方法,分析装药结构参数、爆距与峰值超压之间的关联关系。设计1DCNN深度网络挖掘不同长径比、爆距等参数与峰值超压之间的纵向时序关系。运用XGBoost算法寻找装药结构参数、爆距与峰值超压之间的横向非线性关系,提升小样本数据的预测精度。使用PSO算法优化1DCNN和XGBoost的超参数,获得最优算法结构。研究结果表明,在包含10种智能算法的对比实验中,PSO-CNN-XGBoost水下柱形装药峰值超压预测算法在精度、稳定性、拟合程度上均高于其他模型。 展开更多
关键词 水下柱形装药 长径比 爆距 峰值超压 粒子群优化算法 一维卷积神经网络 极端梯度提升
下载PDF
基于BiLSTM-XGBoost混合模型的储层岩性识别 被引量:1
5
作者 杜睿山 黄玉朋 +2 位作者 孟令东 张轶楠 周长坤 《计算机系统应用》 2024年第6期108-116,共9页
储层岩性分类是地质研究基础,基于数据驱动的机器学习模型虽然能较好地识别储层岩性,但由于测井数据是特殊的序列数据,模型很难有效提取数据的空间相关性,造成模型对储层识别仍存在不足.针对此问题,本文结合双向长短期循环神经网络(bidi... 储层岩性分类是地质研究基础,基于数据驱动的机器学习模型虽然能较好地识别储层岩性,但由于测井数据是特殊的序列数据,模型很难有效提取数据的空间相关性,造成模型对储层识别仍存在不足.针对此问题,本文结合双向长短期循环神经网络(bidirectional long short-term memory,BiLSTM)和极端梯度提升决策树(extreme gradient boosting decision tree,XGBoost),提出双向记忆极端梯度提升(BiLSTM-XGBoost,BiXGB)模型预测储层岩性.该模型在传统XGBoost基础上融入了BiLSTM,大大增强了模型对测井数据的特征提取能力.BiXGB模型使用BiLSTM对测井数据进行特征提取,将提取到的特征传递给XGBoost分类模型进行训练和预测.将BiXGB模型应用于储层岩性数据集时,模型预测的总体精度达到了91%.为了进一步验证模型的准确性和稳定性,将模型应用于UCI公开的Occupancy序列数据集,结果显示模型的预测总体精度也高达93%.相较于其他机器学习模型,BiXGB模型能准确地对序列数据进行分类,提高了储层岩性的识别精度,满足了油气勘探的实际需要,为储层岩性识别提供了新的方法. 展开更多
关键词 神经网络 机器学习 测井数据 岩性分类 BiLSTM xgboost
下载PDF
一种基于贝叶斯优化和XGBoost的膏体流变参数预测模型
6
作者 赵艳伟 胡正祥 +4 位作者 乔登攀 姚晋龙 李广涛 杨天雨 王俊 《有色金属(矿山部分)》 2024年第5期118-128,共11页
探究膏体充填料浆流变特性,对矿山合理布置充填管路,高效进行充填作业有重要意义。目的:将繁琐且影响因素众多的膏体流变参数测量试验与先进的机器学习回归预测模型相结合,实现膏体流变参数的准确预测。方法:利用不同物料配合比条件下共... 探究膏体充填料浆流变特性,对矿山合理布置充填管路,高效进行充填作业有重要意义。目的:将繁琐且影响因素众多的膏体流变参数测量试验与先进的机器学习回归预测模型相结合,实现膏体流变参数的准确预测。方法:利用不同物料配合比条件下共128组膏体流变特性试验数据作为模型数据集,选择极度梯度提升回归树(XGBoost)模型,结合贝叶斯算法(BO)对模型进行超参数寻优设置,建立了多目标参数回归预测模型。结果:研究结果表明:经贝叶斯算法优化后的BO-XGBoost模型较XGBoost模型性能显著提升,决定系数R^(2)提高6%。所构建BO-XGBoost模型真实值与预测值在屈服应力数据集上相对误差维持在0.02水平;黏度数据集维持在0.1水平。结论:BO-XGBoost模型可实现膏体流变参数的高效准确预测,创新性地使用了多目标回归模型,为矿山充填作业设计提供参考,具有一定实际工程应用意义。 展开更多
关键词 膏体充填 流变特性 机器学习 贝叶斯优化 极度提升回归树
下载PDF
结合SVM与XGBoost的链式多路径覆盖测试用例生成
7
作者 钱忠胜 俞情媛 +3 位作者 张丁 姚昌森 秦朗悦 成轶伟 《软件学报》 EI CSCD 北大核心 2024年第6期2795-2820,共26页
机器学习方法可很好地与软件测试相结合,增强测试效果,但少有学者将其运用于测试数据生成方面.为进一步提高测试数据生成效率,提出一种结合SVM(support vector machine)和XGBoost(extreme gradient boosting)的链式模型,并基于此模型借... 机器学习方法可很好地与软件测试相结合,增强测试效果,但少有学者将其运用于测试数据生成方面.为进一步提高测试数据生成效率,提出一种结合SVM(support vector machine)和XGBoost(extreme gradient boosting)的链式模型,并基于此模型借助遗传算法实现多路径测试数据生成.首先,利用一定样本训练若干个用于预测路径节点状态的子模型(SVM和XGBoost),通过子模型的预测精度值筛选最优子模型,并根据路径节点顺序将其依次链接,形成一个链式模型C-SVMXGBoost(chained SVM and XGBoost).在利用遗传算法生成测试用例时,使用训练好的链式模型代替插桩法获取测试数据覆盖路径(预测路径),寻找预测路径与目标路径相似的路径集,对存在相似路径集的预测路径进行插桩验证,获取精确路径,计算适应度值.在交叉变异过程中引入样本集中路径层级深度较大的优秀测试用例进行重用,生成覆盖目标路径的测试数据.最后,保留进化生成中产生的适应度较高的个体,更新链式模型C-SVMXGBoost,进一步提高测试效率.实验表明,C-SVMXGBoost较其他各对比链式模型更适合解决路径预测问题,可提高测试效率.并且通过与已有经典方法相比,所提方法在覆盖率上提高可达15%,平均进化代数也有所降低,在较大规模程序上其降低百分比可达65%. 展开更多
关键词 测试用例 SVM xgboost 链式模型 多路径覆盖
下载PDF
基于STL-XGBoost-NBEATSx的小时天然气负荷预测
8
作者 邵必林 任萌 田宁 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第3期170-179,共10页
小时天然气负荷预测受外部特征因素与预测方法的影响,为提高其预测精度并解决其他深度学习类模型或组合模型可解释性差、训练时间过长的问题,在引入“小时影响度”这一新特征因素的同时提出一种基于极端梯度提升树(extreme gradient boo... 小时天然气负荷预测受外部特征因素与预测方法的影响,为提高其预测精度并解决其他深度学习类模型或组合模型可解释性差、训练时间过长的问题,在引入“小时影响度”这一新特征因素的同时提出一种基于极端梯度提升树(extreme gradient boosting tress,XGBoost)模型与可解释性神经网络模型NBEATSx组合预测的方法;以XGBoost模型作为特征筛选器对特征集数据进行筛选,再将筛选降维后的数据集输入到NBEATSx中训练,提高NBEATSx的训练速度与预测精度;将负荷数据与特征数据经STL(seasonal and trend decomposition using Loess)算法分解为趋势分量、季节分量与残差分量,再分别输入到XGBoost中进行预测,减弱原始数据中的噪音影响;将优化后的NBEATSx与XGBoost模型通过方差倒数法进行组合,得出STL-XGBoost-NBEATSx组合模型的预测结果。结果表明:“小时影响度”这一新特征是小时负荷预测的重要影响因素,STL-XGBoost-NBEATSx模型训练速度有所提高,具有良好的可解释性与更高的预测准确性,模型预测结果的平均绝对百分比误差、均方误差、平均绝对误差分别比其余单一模型平均降低54.20%、63.97%、49.72%,比其余组合模型平均降低24.85%、34.39%、23.41%,模型的决定系数为0.935,能够很好地拟合观测数据。 展开更多
关键词 天然气负荷预测 小时影响因素 极端梯度提升树 可解释性 NBEATSx 组合模型
下载PDF
基于WOA-VMD-XGBoost的混凝土坝变形预测
9
作者 常留红 李晨玉 +3 位作者 曾子彬 尹光景 赵芃芃 薛雄 《水利水运工程学报》 CSCD 北大核心 2024年第3期146-157,共12页
建立混凝土坝高精准变形预测模型是掌握坝体结构服役性态的关键,而其变形监测数据具有复杂的非线性和非平稳特征,会影响预测模型的精度及泛化能力。针对上述问题,引入鲸鱼优化算法(WOA)和包络熵理论自适应寻优变分模态分解(VMD)参数,根... 建立混凝土坝高精准变形预测模型是掌握坝体结构服役性态的关键,而其变形监测数据具有复杂的非线性和非平稳特征,会影响预测模型的精度及泛化能力。针对上述问题,引入鲸鱼优化算法(WOA)和包络熵理论自适应寻优变分模态分解(VMD)参数,根据最佳参数组合多尺度分解变形数据,得到多个不同特征尺度的本征模态函数(IMF)。通过重构分量为新分量,将新分量分别输入极端梯度提升(XGBoost)模型中进行预测,叠加各预测结果得到最终预测值。基于山口岩碾压混凝土拱坝变形监测数据,开展支持向量回归机(SVR)、随机森林(RF)、XGBoost、WOA-VMD-XGBoost等4种模型的精度、泛化能力对比研究。结果表明:相比于单一预测模型,组合模型有效挖掘了变形信号多尺度特征,降低了非线性、非平稳性对模型性能的影响,在精度、泛化能力中表现出更高性能。该组合模型为大坝变形监测提供了理论依据和应用参考。 展开更多
关键词 混凝土坝 变形预测 鲸鱼优化算法 包络熵 变分模态分解 极端梯度提升
下载PDF
基于XGBoost增量实现业务流程执行结果的预测性监控方法 被引量:1
10
作者 王娇娇 马小雨 +3 位作者 刘畅 俞定国 俞东进 张银珠 《计算机集成制造系统》 EI CSCD 北大核心 2024年第8期2756-2775,共20页
随着工业制造业务流程智能化提升,以预测执行结果为目标的监控技术成为必需。该技术基于历史执行构建预测模型,从而对正在执行的流程进行结果预测。但现有研究假定流程执行行为一直保持不变,实际上流程在运行中常发生变化(即流程执行发... 随着工业制造业务流程智能化提升,以预测执行结果为目标的监控技术成为必需。该技术基于历史执行构建预测模型,从而对正在执行的流程进行结果预测。但现有研究假定流程执行行为一直保持不变,实际上流程在运行中常发生变化(即流程执行发生漂移),因此预测模型也需要适应这种漂移。针对这种情况,受到在线学习思想的启发,提出了基于XGBoost增量实现以流程执行结果为目标的预测流程监控技术,并分别在真实数据集和合成数据集上进行了大量的实验。实验结果表明,基于XGBoost的增量学习技术能够很好地为工业制造真实场景中的预测性流程监控提供一种有效的解决方案。 展开更多
关键词 预测性业务流程监控 xgboost 增量学习 概念漂移
下载PDF
基于SC-XGBoost的电站燃煤低位发热量软测量方法
11
作者 乔世超 王轶男 +4 位作者 吕佳阳 陈衡 刘涛 徐钢 翟融融 《煤炭科学技术》 EI CAS CSCD 北大核心 2024年第S01期332-340,共9页
随着国家大力推进能源供给侧结构性改革,新能源装机容量不断提升,电力市场竞争愈加激烈。另一方面,全球煤炭市场的复杂多变,导致以煤炭为能量来源的发电企业成本上涨。燃煤发热量是衡量煤质的重要评价标准之一,也是采购煤炭最重要的依据... 随着国家大力推进能源供给侧结构性改革,新能源装机容量不断提升,电力市场竞争愈加激烈。另一方面,全球煤炭市场的复杂多变,导致以煤炭为能量来源的发电企业成本上涨。燃煤发热量是衡量煤质的重要评价标准之一,也是采购煤炭最重要的依据,对燃煤发热量进行准确预测能够有效地控制电厂运行采购成本。为了实现燃煤发热量的高效预测,采用Pearson系数对相关变量进行特征选取,采用基于密度的噪点空间聚类(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)算法对某电厂自备煤厂近2年1733条化验数据进行去噪,对去噪后数据进行谱聚类(Spectral Clustering,SC)分析。将分类后的子样本集采用极致梯度提升(Extreme Gradient Boosting,XGBoost)算法分别建立预测模型,并与最小二乘法回归(Ordinary Least Squares,OLS)、支持向量机(Support Vector Machines,SVM)模型进行性能比较。结果表明,基于XGBoost的电站燃煤发热量预测模型相较于其他算法准确性有明显提升,泛化能力更强。对经过SC算法分类后的燃煤分别建立预测模型能够进一步提高模型的精细化水平,为燃煤电站发热量预测提供一种可靠高效的方法。 展开更多
关键词 低位发热量 机器学习 谱聚类 极致梯度提升(xgboost) 软测量
下载PDF
Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization 被引量:59
12
作者 Wengang Zhang Chongzhi Wu +2 位作者 Haiyi Zhong Yongqin Li Lin Wang 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第1期469-477,共9页
Accurate assessment of undrained shear strength(USS)for soft sensitive clays is a great concern in geotechnical engineering practice.This study applies novel data-driven extreme gradient boosting(XGBoost)and random fo... Accurate assessment of undrained shear strength(USS)for soft sensitive clays is a great concern in geotechnical engineering practice.This study applies novel data-driven extreme gradient boosting(XGBoost)and random forest(RF)ensemble learning methods for capturing the relationships between the USS and various basic soil parameters.Based on the soil data sets from TC304 database,a general approach is developed to predict the USS of soft clays using the two machine learning methods above,where five feature variables including the preconsolidation stress(PS),vertical effective stress(VES),liquid limit(LL),plastic limit(PL)and natural water content(W)are adopted.To reduce the dependence on the rule of thumb and inefficient brute-force search,the Bayesian optimization method is applied to determine the appropriate model hyper-parameters of both XGBoost and RF.The developed models are comprehensively compared with three comparison machine learning methods and two transformation models with respect to predictive accuracy and robustness under 5-fold cross-validation(CV).It is shown that XGBoost-based and RF-based methods outperform these approaches.Besides,the XGBoostbased model provides feature importance ranks,which makes it a promising tool in the prediction of geotechnical parameters and enhances the interpretability of model. 展开更多
关键词 Undrained shear strength extreme gradient boosting Random forest Bayesian optimization k-fold CV
下载PDF
基于遗传算法优化XGBoost模型的地铁乘客出站走行时间预测
13
作者 郭凯旋 肖梅 +1 位作者 刘宇 张皓 《科学技术与工程》 北大核心 2024年第18期7851-7858,共8页
地铁乘客出站走行时间的预测是城市交通运行和管理的重要依据,对其进行准确预测有助于缓解地铁拥堵、优化地铁服务和提高乘客满意度。为了准确预测地铁乘客出站走行时间,首先,基于视频分析软件从监控视频中提取了乘客出站时的走行时间... 地铁乘客出站走行时间的预测是城市交通运行和管理的重要依据,对其进行准确预测有助于缓解地铁拥堵、优化地铁服务和提高乘客满意度。为了准确预测地铁乘客出站走行时间,首先,基于视频分析软件从监控视频中提取了乘客出站时的走行时间和若干特征变量。其次,为了筛选出对走行时间有显著影响的因素,采用相关性分析和最优尺度回归模型进行影响因素分析,并使用遗传算法进行最优特征组合的提取。最终,将提取出的特征作为输入向量,使用极端梯度提升模型(extreme gradient boosting,XGBoost)进行走行时间的预测,并以平均绝对误差等作为评价指标。实验结果表明,本文提出的方法在地铁乘客出站行为预测方面具有较好的效果,平均绝对误差为1.55 s,低于未优化的极端梯度提升模型(1.87 s)、支持向量机(2.03 s)和随机森林(1.96 s)等模型。 展开更多
关键词 遗传算法 极端梯度提升模型 走行时间预测 特征提取
下载PDF
基于PCA-GA-XGBoost模型的吉林省水资源 承载力评价 被引量:2
14
作者 庞博文 李治军 《人民珠江》 2024年第4期98-106,共9页
为了提高水资源承载力评价的效率和准确性,提出了一种基于主成分分析(PCA)、遗传算法(GA)和极限梯度提升树(XGBoost)的指标评价模型。定义了以水资源、社会经济、生态环境为子系统的14项评价指标;采用主成分分析法对评价指标进行降维处... 为了提高水资源承载力评价的效率和准确性,提出了一种基于主成分分析(PCA)、遗传算法(GA)和极限梯度提升树(XGBoost)的指标评价模型。定义了以水资源、社会经济、生态环境为子系统的14项评价指标;采用主成分分析法对评价指标进行降维处理;基于梯度提升决策树对吉林省2011—2021年的水资源承载力进行评价分析,并利用遗传算法对极限梯度提升树中4个参数进行优化。结果表明:经主成分分析简化评价指标后,PCA-GA-XGBoost模型的相关系数等指标均优于GA-BP、GA-SVM、GA-XGBoost和XGBoost;2011—2021年吉林省水资源承载力位于0.192~0.724,为先上升后下降再上升趋势,承载力状况逐年改善;利用模型内置的特征值重要度排序功能,识别得出重要度最大的指标为每公顷化肥施用量(0.5307),是影响吉林省水资源承载力的关键因素。 展开更多
关键词 主成分分析 遗传算法 极限梯度提升树 水资源承载力 吉林省
下载PDF
井下动态环境基于DAE的XGBoost自适应定位算法研究
15
作者 洪金祥 崔丽珍 窦占树 《传感器与微系统》 CSCD 北大核心 2024年第10期23-26,30,共5页
针对煤矿井下高动态环境导致WiFi定位模型的精度降低的问题,提出极端梯度提升(XGBoost)的指纹定位算法,利用其高维数据特征的学习能力完成定位。与传统的梯度提升树(GBDT)算法相比,在完成更好定位效果的同时,速度也大大提升。同时针对W... 针对煤矿井下高动态环境导致WiFi定位模型的精度降低的问题,提出极端梯度提升(XGBoost)的指纹定位算法,利用其高维数据特征的学习能力完成定位。与传统的梯度提升树(GBDT)算法相比,在完成更好定位效果的同时,速度也大大提升。同时针对WiFi数据的波动性和XGBoost算法面对动态环境模型漂移问题,分别提出融合降噪自编码器(DAE)和自适应机制的D-XGBoost算法和Z-XGBoost算法。实验结果表明:XGBoost算法的定位精度比GBDT算法提高了,效率提高了5倍多。融合DAE的D-XG-Boost算法的定位准确率比XGBoost算法提高了17%;融合了自适应机制的Z-XGBoost算法有效降低了模型漂移造成的误差。所提改进算法更好地改善了WiFi定位模型精度降低和模型漂移问题。 展开更多
关键词 极端梯度提升 井下指纹定位 模型漂移 降噪自编码器 误差补偿
下载PDF
基于改进XGBoost的金融客户投资行为特征选择方法
16
作者 吴成英 马东方 《计算机应用》 CSCD 北大核心 2024年第S01期330-336,共7页
金融客户投资购买行为是投资者动态购买理财产品交易决策的综合结果,受到客户自身属性、产品因素、行情信息和历史交易等多个不同因素的影响,原始因子属性的特征维度庞大、拟合风险偏高。现有研究主要通过不同的算法提高特征选择的准确... 金融客户投资购买行为是投资者动态购买理财产品交易决策的综合结果,受到客户自身属性、产品因素、行情信息和历史交易等多个不同因素的影响,原始因子属性的特征维度庞大、拟合风险偏高。现有研究主要通过不同的算法提高特征选择的准确率,忽略了不同群体的差异化特征及动态因素的影响。因此,提出一种改进XGBoost(eXtreme Gradient Boosting)的特征选择算法,并在金融客户投资行为上应用研究。针对客户群体投资行为的差异性,多维度综合量化分析投资行为,以解决单一投资行为指标不合理问题;对不同客户群体通过主成分分析(PCA)降维和优化的K-均值(K-means)聚类算法进行多属性融合聚类,然后分别对聚类后的不同群体使用改进XGBoost进行多分类预测,并通过修剪特征因子提升预测准确率。实验结果表明,使用改进XGBoost后,金融客户投资行为的特征因子维度更贴近实际,准确率更高。 展开更多
关键词 特征选择 xgboost 多类别分类 主成分分析 K-MEANS聚类 投资行为
下载PDF
基于WKPCA与IEDO-XGBoost的变压器故障诊断方法研究
17
作者 张容槟 徐耀松 牛元平 《电工电能新技术》 CSCD 北大核心 2024年第10期24-42,共19页
针对变压器故障的特点,将加权核主成分分析技术与IEDO-XGBoost相结合,提出了一种新的变压器故障诊断模型。该方法主要将溶解气体分析技术与无编码比值法相结合,获取变压器的故障特征,利用WKPCA对其进行降维处理,并将归一化处理后的故障... 针对变压器故障的特点,将加权核主成分分析技术与IEDO-XGBoost相结合,提出了一种新的变压器故障诊断模型。该方法主要将溶解气体分析技术与无编码比值法相结合,获取变压器的故障特征,利用WKPCA对其进行降维处理,并将归一化处理后的故障样本数据作为IEDO-XGBoost模型的输入,输出变压器故障诊断类型及其诊断准确率。选取20维变压器故障特征数据进行WKPCA降维处理,加快了模型的收敛速度;采用自适应正余弦策略和高斯变异策略对指数分布优化器算法进行改进,并用10个典型测试函数对改进后的指数分布优化算法性能进行了测试,结果表明改进后的指数分布优化算法具有更快的收敛速度和全局搜索能力。然后,利用改进的指数分布算法来确定XGBoost模型中的多个最优参数。仿真结果表明,该模型的诊断准确率为91.82%,分别比EDO-XGBoost、NGO-XGBoost、GJO-XGBoost、GWO-XGBoost和WOA-XGBoost故障诊断模型高2.73%、3.64%、5.46%、8.18%和10.91%,验证了本文所提方法能够有效提高变压器故障诊断性能。 展开更多
关键词 变压器 加权核主成分分析 故障诊断 溶解气体分析 指数分布优化算法 极端梯度提升
下载PDF
基于BOXGBoost的配变日峰值负荷预测及重过载预警方法
18
作者 邓威 梅玉杰 +3 位作者 李勇 郭钇秀 康童 任磊 《电力系统及其自动化学报》 CSCD 北大核心 2024年第7期49-58,共10页
为解决配变负荷日峰值预测精度不高、重过载预警误差大的问题,提出一种配变日峰值负荷预测及重过载预警方法。首先,基于时间卷积网络对配变日负荷进行预测;然后,通过贝叶斯优化极限梯度提升模型对配变日负荷峰值出现时刻及峰值区间幅值... 为解决配变负荷日峰值预测精度不高、重过载预警误差大的问题,提出一种配变日峰值负荷预测及重过载预警方法。首先,基于时间卷积网络对配变日负荷进行预测;然后,通过贝叶斯优化极限梯度提升模型对配变日负荷峰值出现时刻及峰值区间幅值进行独立预测;最后,使用峰值预测补正日负荷预测结果并转化为预警等级,实现配变重过载预警。采用湖南某地区配电台区数据实例验证,结果表明,所提方法可实现配变日峰值负荷精确预测及准确预警重过载运行风险。 展开更多
关键词 配电变压器 时间卷积网络 贝叶斯优化 极限梯度提升 峰值负荷预测 重过载预警
下载PDF
Forecasting Multi-Step Ahead Monthly Reference Evapotranspiration Using Hybrid Extreme Gradient Boosting with Grey Wolf Optimization Algorithm 被引量:1
19
作者 Xianghui Lu Junliang Fan +1 位作者 Lifeng Wu Jianhua Dong 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第11期699-723,共25页
It is important for regional water resources management to know the agricultural water consumption information several months in advance.Forecasting reference evapotranspiration(ET_(0))in the next few months is import... It is important for regional water resources management to know the agricultural water consumption information several months in advance.Forecasting reference evapotranspiration(ET_(0))in the next few months is important for irrigation and reservoir management.Studies on forecasting of multiple-month ahead ET_(0) using machine learning models have not been reported yet.Besides,machine learning models such as the XGBoost model has multiple parameters that need to be tuned,and traditional methods can get stuck in a regional optimal solution and fail to obtain a global optimal solution.This study investigated the performance of the hybrid extreme gradient boosting(XGBoost)model coupled with the Grey Wolf Optimizer(GWO)algorithm for forecasting multi-step ahead ET_(0)(1-3 months ahead),compared with three conventional machine learning models,i.e.,standalone XGBoost,multi-layer perceptron(MLP)and M5 model tree(M5)models in the subtropical zone of China.The results showed that theGWO-XGB model generally performed better than the other three machine learning models in forecasting 1-3 months ahead ET_(0),followed by the XGB,M5 and MLP models with very small differences among the three models.The GWO-XGB model performed best in autumn,while the MLP model performed slightly better than the other three models in summer.It is thus suggested to apply the MLP model for ET_(0) forecasting in summer but use the GWO-XGB model in other seasons. 展开更多
关键词 Reference evapotranspiration extreme gradient boosting Grey Wolf Optimizer multi-layer perceptron M5 model tree
下载PDF
基于多特征量分析和LSTM-XGBoost模型的锂离子电池SOH估计方法
20
作者 陆继忠 彭思敏 李晓宇 《储能科学与技术》 CAS CSCD 北大核心 2024年第9期2972-2982,共11页
准确评估锂离子电池健康状态(state of health,SOH)对保证电动汽车的安全稳定运行至关重要。然而,传统SOH估计方法在有效提取健康特征(health features,HFs)和依赖大量特征测试数据上面临一些挑战。为此,本文提出一种基于多特征量分析... 准确评估锂离子电池健康状态(state of health,SOH)对保证电动汽车的安全稳定运行至关重要。然而,传统SOH估计方法在有效提取健康特征(health features,HFs)和依赖大量特征测试数据上面临一些挑战。为此,本文提出一种基于多特征量分析和长短期记忆(long short-term memory,LSTM)-极端梯度提升(eXtreme gradient boosting,XGBoost)模型的锂离子电池SOH估计方法。首先,为准确描述电池的老化机理,从电池充电数据中提取关于时间、能量、IC三大类共6个HFs。考虑到同类型HFs之间存在大量冗余信息,采用一种基于双相关性的特征处理方法,筛选出可准确表征电池退化趋势的组合HFs。其次,针对传统SOH估计模型需要大量HFs测试数据的问题,提出一种基于LSTM-XGBoost的SOH估计模型。在该模型中,采用LSTM算法来预测电池剩余循环次数的HFs数据。同时,为解决LSTM模型进行HFs预测时计算效率不高的问题,采用LSTMXGBoost模型进行电池SOH估计。利用NASA电池数据集进行验证,结果表明,所提出方法在不同测试数据量下能准确估计锂电池的SOH,且均方根误差保持在1%以内,具有较高的估计精度和鲁棒性。 展开更多
关键词 锂离子电池 健康状态 特征分析 长短期记忆神经网络 极端梯度提升
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部