Efficient water quality monitoring and ensuring the safety of drinking water by government agencies in areas where the resource is constantly depleted due to anthropogenic or natural factors cannot be overemphasized. ...Efficient water quality monitoring and ensuring the safety of drinking water by government agencies in areas where the resource is constantly depleted due to anthropogenic or natural factors cannot be overemphasized. The above statement holds for West Texas, Midland, and Odessa Precisely. Two machine learning regression algorithms (Random Forest and XGBoost) were employed to develop models for the prediction of total dissolved solids (TDS) and sodium absorption ratio (SAR) for efficient water quality monitoring of two vital aquifers: Edward-Trinity (plateau), and Ogallala aquifers. These two aquifers have contributed immensely to providing water for different uses ranging from domestic, agricultural, industrial, etc. The data was obtained from the Texas Water Development Board (TWDB). The XGBoost and Random Forest models used in this study gave an accurate prediction of observed data (TDS and SAR) for both the Edward-Trinity (plateau) and Ogallala aquifers with the R<sup>2</sup> values consistently greater than 0.83. The Random Forest model gave a better prediction of TDS and SAR concentration with an average R, MAE, RMSE and MSE of 0.977, 0.015, 0.029 and 0.00, respectively. For the XGBoost, an average R, MAE, RMSE, and MSE of 0.953, 0.016, 0.037 and 0.00, respectively, were achieved. The overall performance of the models produced was impressive. From this study, we can clearly understand that Random Forest and XGBoost are appropriate for water quality prediction and monitoring in an area of high hydrocarbon activities like Midland and Odessa and West Texas at large.展开更多
The Sentinel-2 satellites are providing an unparalleled wealth of high-resolution remotely sensed information with a short revisit cycle, which is ideal for mapping burned areas both accurately and timely. This paper ...The Sentinel-2 satellites are providing an unparalleled wealth of high-resolution remotely sensed information with a short revisit cycle, which is ideal for mapping burned areas both accurately and timely. This paper proposes an automated methodology for mapping burn scars using pairs of Sentinel-2 imagery, exploiting the state-of-the-art eXtreme Gradient Boosting (XGB) machine learning framework. A large database of 64 reference wildfire perimeters in Greece from 2016 to 2019 is used to train the classifier. An empirical methodology for appropriately sampling the training patterns from this database is formulated, which guarantees the effectiveness of the approach and its computational efficiency. A difference (pre-fire minus post-fire) spectral index is used for this purpose, upon which we appropriately identify the clear and fuzzy value ranges. To reduce the data volume, a super-pixel segmentation of the images is also employed, implemented via the QuickShift algorithm. The cross-validation results showcase the effectiveness of the proposed algorithm, with the average commission and omission errors being 9% and 2%, respectively, and the average Matthews correlation coefficient (MCC) equal to 0.93.展开更多
随着国家大力推进能源供给侧结构性改革,新能源装机容量不断提升,电力市场竞争愈加激烈。另一方面,全球煤炭市场的复杂多变,导致以煤炭为能量来源的发电企业成本上涨。燃煤发热量是衡量煤质的重要评价标准之一,也是采购煤炭最重要的依据...随着国家大力推进能源供给侧结构性改革,新能源装机容量不断提升,电力市场竞争愈加激烈。另一方面,全球煤炭市场的复杂多变,导致以煤炭为能量来源的发电企业成本上涨。燃煤发热量是衡量煤质的重要评价标准之一,也是采购煤炭最重要的依据,对燃煤发热量进行准确预测能够有效地控制电厂运行采购成本。为了实现燃煤发热量的高效预测,采用Pearson系数对相关变量进行特征选取,采用基于密度的噪点空间聚类(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)算法对某电厂自备煤厂近2年1733条化验数据进行去噪,对去噪后数据进行谱聚类(Spectral Clustering,SC)分析。将分类后的子样本集采用极致梯度提升(Extreme Gradient Boosting,XGBoost)算法分别建立预测模型,并与最小二乘法回归(Ordinary Least Squares,OLS)、支持向量机(Support Vector Machines,SVM)模型进行性能比较。结果表明,基于XGBoost的电站燃煤发热量预测模型相较于其他算法准确性有明显提升,泛化能力更强。对经过SC算法分类后的燃煤分别建立预测模型能够进一步提高模型的精细化水平,为燃煤电站发热量预测提供一种可靠高效的方法。展开更多
Accurate assessment of undrained shear strength(USS)for soft sensitive clays is a great concern in geotechnical engineering practice.This study applies novel data-driven extreme gradient boosting(XGBoost)and random fo...Accurate assessment of undrained shear strength(USS)for soft sensitive clays is a great concern in geotechnical engineering practice.This study applies novel data-driven extreme gradient boosting(XGBoost)and random forest(RF)ensemble learning methods for capturing the relationships between the USS and various basic soil parameters.Based on the soil data sets from TC304 database,a general approach is developed to predict the USS of soft clays using the two machine learning methods above,where five feature variables including the preconsolidation stress(PS),vertical effective stress(VES),liquid limit(LL),plastic limit(PL)and natural water content(W)are adopted.To reduce the dependence on the rule of thumb and inefficient brute-force search,the Bayesian optimization method is applied to determine the appropriate model hyper-parameters of both XGBoost and RF.The developed models are comprehensively compared with three comparison machine learning methods and two transformation models with respect to predictive accuracy and robustness under 5-fold cross-validation(CV).It is shown that XGBoost-based and RF-based methods outperform these approaches.Besides,the XGBoostbased model provides feature importance ranks,which makes it a promising tool in the prediction of geotechnical parameters and enhances the interpretability of model.展开更多
It is important for regional water resources management to know the agricultural water consumption information several months in advance.Forecasting reference evapotranspiration(ET_(0))in the next few months is import...It is important for regional water resources management to know the agricultural water consumption information several months in advance.Forecasting reference evapotranspiration(ET_(0))in the next few months is important for irrigation and reservoir management.Studies on forecasting of multiple-month ahead ET_(0) using machine learning models have not been reported yet.Besides,machine learning models such as the XGBoost model has multiple parameters that need to be tuned,and traditional methods can get stuck in a regional optimal solution and fail to obtain a global optimal solution.This study investigated the performance of the hybrid extreme gradient boosting(XGBoost)model coupled with the Grey Wolf Optimizer(GWO)algorithm for forecasting multi-step ahead ET_(0)(1-3 months ahead),compared with three conventional machine learning models,i.e.,standalone XGBoost,multi-layer perceptron(MLP)and M5 model tree(M5)models in the subtropical zone of China.The results showed that theGWO-XGB model generally performed better than the other three machine learning models in forecasting 1-3 months ahead ET_(0),followed by the XGB,M5 and MLP models with very small differences among the three models.The GWO-XGB model performed best in autumn,while the MLP model performed slightly better than the other three models in summer.It is thus suggested to apply the MLP model for ET_(0) forecasting in summer but use the GWO-XGB model in other seasons.展开更多
文摘Efficient water quality monitoring and ensuring the safety of drinking water by government agencies in areas where the resource is constantly depleted due to anthropogenic or natural factors cannot be overemphasized. The above statement holds for West Texas, Midland, and Odessa Precisely. Two machine learning regression algorithms (Random Forest and XGBoost) were employed to develop models for the prediction of total dissolved solids (TDS) and sodium absorption ratio (SAR) for efficient water quality monitoring of two vital aquifers: Edward-Trinity (plateau), and Ogallala aquifers. These two aquifers have contributed immensely to providing water for different uses ranging from domestic, agricultural, industrial, etc. The data was obtained from the Texas Water Development Board (TWDB). The XGBoost and Random Forest models used in this study gave an accurate prediction of observed data (TDS and SAR) for both the Edward-Trinity (plateau) and Ogallala aquifers with the R<sup>2</sup> values consistently greater than 0.83. The Random Forest model gave a better prediction of TDS and SAR concentration with an average R, MAE, RMSE and MSE of 0.977, 0.015, 0.029 and 0.00, respectively. For the XGBoost, an average R, MAE, RMSE, and MSE of 0.953, 0.016, 0.037 and 0.00, respectively, were achieved. The overall performance of the models produced was impressive. From this study, we can clearly understand that Random Forest and XGBoost are appropriate for water quality prediction and monitoring in an area of high hydrocarbon activities like Midland and Odessa and West Texas at large.
文摘The Sentinel-2 satellites are providing an unparalleled wealth of high-resolution remotely sensed information with a short revisit cycle, which is ideal for mapping burned areas both accurately and timely. This paper proposes an automated methodology for mapping burn scars using pairs of Sentinel-2 imagery, exploiting the state-of-the-art eXtreme Gradient Boosting (XGB) machine learning framework. A large database of 64 reference wildfire perimeters in Greece from 2016 to 2019 is used to train the classifier. An empirical methodology for appropriately sampling the training patterns from this database is formulated, which guarantees the effectiveness of the approach and its computational efficiency. A difference (pre-fire minus post-fire) spectral index is used for this purpose, upon which we appropriately identify the clear and fuzzy value ranges. To reduce the data volume, a super-pixel segmentation of the images is also employed, implemented via the QuickShift algorithm. The cross-validation results showcase the effectiveness of the proposed algorithm, with the average commission and omission errors being 9% and 2%, respectively, and the average Matthews correlation coefficient (MCC) equal to 0.93.
文摘小时天然气负荷预测受外部特征因素与预测方法的影响,为提高其预测精度并解决其他深度学习类模型或组合模型可解释性差、训练时间过长的问题,在引入“小时影响度”这一新特征因素的同时提出一种基于极端梯度提升树(extreme gradient boosting tress,XGBoost)模型与可解释性神经网络模型NBEATSx组合预测的方法;以XGBoost模型作为特征筛选器对特征集数据进行筛选,再将筛选降维后的数据集输入到NBEATSx中训练,提高NBEATSx的训练速度与预测精度;将负荷数据与特征数据经STL(seasonal and trend decomposition using Loess)算法分解为趋势分量、季节分量与残差分量,再分别输入到XGBoost中进行预测,减弱原始数据中的噪音影响;将优化后的NBEATSx与XGBoost模型通过方差倒数法进行组合,得出STL-XGBoost-NBEATSx组合模型的预测结果。结果表明:“小时影响度”这一新特征是小时负荷预测的重要影响因素,STL-XGBoost-NBEATSx模型训练速度有所提高,具有良好的可解释性与更高的预测准确性,模型预测结果的平均绝对百分比误差、均方误差、平均绝对误差分别比其余单一模型平均降低54.20%、63.97%、49.72%,比其余组合模型平均降低24.85%、34.39%、23.41%,模型的决定系数为0.935,能够很好地拟合观测数据。
文摘随着国家大力推进能源供给侧结构性改革,新能源装机容量不断提升,电力市场竞争愈加激烈。另一方面,全球煤炭市场的复杂多变,导致以煤炭为能量来源的发电企业成本上涨。燃煤发热量是衡量煤质的重要评价标准之一,也是采购煤炭最重要的依据,对燃煤发热量进行准确预测能够有效地控制电厂运行采购成本。为了实现燃煤发热量的高效预测,采用Pearson系数对相关变量进行特征选取,采用基于密度的噪点空间聚类(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)算法对某电厂自备煤厂近2年1733条化验数据进行去噪,对去噪后数据进行谱聚类(Spectral Clustering,SC)分析。将分类后的子样本集采用极致梯度提升(Extreme Gradient Boosting,XGBoost)算法分别建立预测模型,并与最小二乘法回归(Ordinary Least Squares,OLS)、支持向量机(Support Vector Machines,SVM)模型进行性能比较。结果表明,基于XGBoost的电站燃煤发热量预测模型相较于其他算法准确性有明显提升,泛化能力更强。对经过SC算法分类后的燃煤分别建立预测模型能够进一步提高模型的精细化水平,为燃煤电站发热量预测提供一种可靠高效的方法。
基金financial support from High-end Foreign Expert Introduction program(No.G20190022002)Chongqing Construction Science and Technology Plan Project(2019-0045)as well as Chongqing Engineering Research Center of Disaster Prevention&Control for Banks and Structures in Three Gorges Reservoir Area(Nos.SXAPGC18ZD01 and SXAPGC18YB03)。
文摘Accurate assessment of undrained shear strength(USS)for soft sensitive clays is a great concern in geotechnical engineering practice.This study applies novel data-driven extreme gradient boosting(XGBoost)and random forest(RF)ensemble learning methods for capturing the relationships between the USS and various basic soil parameters.Based on the soil data sets from TC304 database,a general approach is developed to predict the USS of soft clays using the two machine learning methods above,where five feature variables including the preconsolidation stress(PS),vertical effective stress(VES),liquid limit(LL),plastic limit(PL)and natural water content(W)are adopted.To reduce the dependence on the rule of thumb and inefficient brute-force search,the Bayesian optimization method is applied to determine the appropriate model hyper-parameters of both XGBoost and RF.The developed models are comprehensively compared with three comparison machine learning methods and two transformation models with respect to predictive accuracy and robustness under 5-fold cross-validation(CV).It is shown that XGBoost-based and RF-based methods outperform these approaches.Besides,the XGBoostbased model provides feature importance ranks,which makes it a promising tool in the prediction of geotechnical parameters and enhances the interpretability of model.
基金This study was jointly supported by the National Natural Science Foundation of China(Nos.51879196,51790533,51709143)Jiangxi Natural Science Foundation of China(No.20181BAB206045).
文摘It is important for regional water resources management to know the agricultural water consumption information several months in advance.Forecasting reference evapotranspiration(ET_(0))in the next few months is important for irrigation and reservoir management.Studies on forecasting of multiple-month ahead ET_(0) using machine learning models have not been reported yet.Besides,machine learning models such as the XGBoost model has multiple parameters that need to be tuned,and traditional methods can get stuck in a regional optimal solution and fail to obtain a global optimal solution.This study investigated the performance of the hybrid extreme gradient boosting(XGBoost)model coupled with the Grey Wolf Optimizer(GWO)algorithm for forecasting multi-step ahead ET_(0)(1-3 months ahead),compared with three conventional machine learning models,i.e.,standalone XGBoost,multi-layer perceptron(MLP)and M5 model tree(M5)models in the subtropical zone of China.The results showed that theGWO-XGB model generally performed better than the other three machine learning models in forecasting 1-3 months ahead ET_(0),followed by the XGB,M5 and MLP models with very small differences among the three models.The GWO-XGB model performed best in autumn,while the MLP model performed slightly better than the other three models in summer.It is thus suggested to apply the MLP model for ET_(0) forecasting in summer but use the GWO-XGB model in other seasons.