期刊文献+
共找到3,507篇文章
< 1 2 176 >
每页显示 20 50 100
Prediction of lime utilization ratio of dephosphorization in BOF steelmaking based on online sequential extreme learning machine with forgetting mechanism
1
作者 Runhao Zhang Jian Yang +1 位作者 Han Sun Wenkui Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期508-517,共10页
The machine learning models of multiple linear regression(MLR),support vector regression(SVR),and extreme learning ma-chine(ELM)and the proposed ELM models of online sequential ELM(OS-ELM)and OS-ELM with forgetting me... The machine learning models of multiple linear regression(MLR),support vector regression(SVR),and extreme learning ma-chine(ELM)and the proposed ELM models of online sequential ELM(OS-ELM)and OS-ELM with forgetting mechanism(FOS-ELM)are applied in the prediction of the lime utilization ratio of dephosphorization in the basic oxygen furnace steelmaking process.The ELM model exhibites the best performance compared with the models of MLR and SVR.OS-ELM and FOS-ELM are applied for sequential learning and model updating.The optimal number of samples in validity term of the FOS-ELM model is determined to be 1500,with the smallest population mean absolute relative error(MARE)value of 0.058226 for the population.The variable importance analysis reveals lime weight,initial P content,and hot metal weight as the most important variables for the lime utilization ratio.The lime utilization ratio increases with the decrease in lime weight and the increases in the initial P content and hot metal weight.A prediction system based on FOS-ELM is applied in actual industrial production for one month.The hit ratios of the predicted lime utilization ratio in the error ranges of±1%,±3%,and±5%are 61.16%,90.63%,and 94.11%,respectively.The coefficient of determination,MARE,and root mean square error are 0.8670,0.06823,and 1.4265,respectively.The system exhibits desirable performance for applications in actual industrial pro-duction. 展开更多
关键词 basic oxygen furnace steelmaking machine learning lime utilization ratio DEPHOSPHORIZATION online sequential extreme learning machine forgetting mechanism
下载PDF
Improved PSO-Extreme Learning Machine Algorithm for Indoor Localization
2
作者 Qiu Wanqing Zhang Qingmiao +1 位作者 Zhao Junhui Yang Lihua 《China Communications》 SCIE CSCD 2024年第5期113-122,共10页
Wi Fi and fingerprinting localization method have been a hot topic in indoor positioning because of their universality and location-related features.The basic assumption of fingerprinting localization is that the rece... Wi Fi and fingerprinting localization method have been a hot topic in indoor positioning because of their universality and location-related features.The basic assumption of fingerprinting localization is that the received signal strength indication(RSSI)distance is accord with the location distance.Therefore,how to efficiently match the current RSSI of the user with the RSSI in the fingerprint database is the key to achieve high-accuracy localization.In this paper,a particle swarm optimization-extreme learning machine(PSO-ELM)algorithm is proposed on the basis of the original fingerprinting localization.Firstly,we collect the RSSI of the experimental area to construct the fingerprint database,and the ELM algorithm is applied to the online stages to determine the corresponding relation between the location of the terminal and the RSSI it receives.Secondly,PSO algorithm is used to improve the bias and weight of ELM neural network,and the global optimal results are obtained.Finally,extensive simulation results are presented.It is shown that the proposed algorithm can effectively reduce mean error of localization and improve positioning accuracy when compared with K-Nearest Neighbor(KNN),Kmeans and Back-propagation(BP)algorithms. 展开更多
关键词 extreme learning machine fingerprinting localization indoor localization machine learning particle swarm optimization
下载PDF
A Hybrid Approach for Predicting the Remaining Useful Life of Bearings Based on the RReliefF Algorithm and Extreme Learning Machine
3
作者 Sen-Hui Wang Xi Kang +3 位作者 Cheng Wang Tian-Bing Ma Xiang He Ke Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1405-1427,共23页
Accurately predicting the remaining useful life(RUL)of bearings in mining rotating equipment is vital for mining enterprises.This research aims to distinguish the features associated with the RUL of bearings and propo... Accurately predicting the remaining useful life(RUL)of bearings in mining rotating equipment is vital for mining enterprises.This research aims to distinguish the features associated with the RUL of bearings and propose a prediction model based on these selected features.This study proposes a hybrid predictive model to assess the RUL of rolling element bearings.The proposed model begins with the pre-processing of bearing vibration signals to reconstruct sixty time-domain features.The hybrid model selects relevant features from the sixty time-domain features of the vibration signal by adopting the RReliefF feature selection algorithm.Subsequently,the extreme learning machine(ELM)approach is applied to develop a predictive model of RUL based on the optimal features.The model is trained by optimizing its parameters via the grid search approach.The training datasets are adjusted to make them most suitable for the regression model using the cross-validation method.The proposed hybrid model is analyzed and validated using the vibration data taken from the public XJTU-SY rolling element-bearing database.The comparison is constructed with other traditional models.The experimental test results demonstrated that the proposed approach can predict the RUL of bearings with a reliable degree of accuracy. 展开更多
关键词 Bearing degradation remaining useful life estimation RReliefF feature selection extreme learning machine
下载PDF
The Extreme Machine Learning Actuarial Intelligent Agricultural Insurance Based Automated Underwriting Model
4
作者 Brighton Mahohoho 《Open Journal of Statistics》 2024年第5期598-633,共36页
The paper presents an innovative approach towards agricultural insurance underwriting and risk pricing through the development of an Extreme Machine Learning (ELM) Actuarial Intelligent Model. This model integrates di... The paper presents an innovative approach towards agricultural insurance underwriting and risk pricing through the development of an Extreme Machine Learning (ELM) Actuarial Intelligent Model. This model integrates diverse datasets, including climate change scenarios, crop types, farm sizes, and various risk factors, to automate underwriting decisions and estimate loss reserves in agricultural insurance. The study conducts extensive exploratory data analysis, model building, feature engineering, and validation to demonstrate the effectiveness of the proposed approach. Additionally, the paper discusses the application of robust tests, stress tests, and scenario tests to assess the model’s resilience and adaptability to changing market conditions. Overall, the research contributes to advancing actuarial science in agricultural insurance by leveraging advanced machine learning techniques for enhanced risk management and decision-making. 展开更多
关键词 extreme Machine learning Actuarial Underwriting Machine learning Intelligent Model Agricultural Insurance
下载PDF
Project Assessment in Offshore Software Maintenance Outsourcing Using Deep Extreme Learning Machines
5
作者 Atif Ikram Masita Abdul Jalil +6 位作者 Amir Bin Ngah Saqib Raza Ahmad Salman Khan Yasir Mahmood Nazri Kama Azri Azmi Assad Alzayed 《Computers, Materials & Continua》 SCIE EI 2023年第1期1871-1886,共16页
Software maintenance is the process of fixing,modifying,and improving software deliverables after they are delivered to the client.Clients can benefit from offshore software maintenance outsourcing(OSMO)in different w... Software maintenance is the process of fixing,modifying,and improving software deliverables after they are delivered to the client.Clients can benefit from offshore software maintenance outsourcing(OSMO)in different ways,including time savings,cost savings,and improving the software quality and value.One of the hardest challenges for the OSMO vendor is to choose a suitable project among several clients’projects.The goal of the current study is to recommend a machine learning-based decision support system that OSMO vendors can utilize to forecast or assess the project of OSMO clients.The projects belong to OSMO vendors,having offices in developing countries while providing services to developed countries.In the current study,Extreme Learning Machine’s(ELM’s)variant called Deep Extreme Learning Machines(DELMs)is used.A novel dataset consisting of 195 projects data is proposed to train the model and to evaluate the overall efficiency of the proposed model.The proposed DELM’s based model evaluations achieved 90.017%training accuracy having a value with 1.412×10^(-3) Root Mean Square Error(RMSE)and 85.772%testing accuracy with 1.569×10^(-3) RMSE with five DELMs hidden layers.The results express that the suggested model has gained a notable recognition rate in comparison to any previous studies.The current study also concludes DELMs as the most applicable and useful technique for OSMO client’s project assessment. 展开更多
关键词 Software outsourcing deep extreme learning machine(Delm) machine learning(ML) extreme learning machine ASSESSMENT
下载PDF
Multiple Extreme Learning Machines Based Arrival Time Prediction for Public Bus Transport
6
作者 J.Jalaney R.S.Ganesh 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期2819-2834,共16页
Due to fast-growing urbanization,the traffic management system becomes a crucial problem owing to the rapid growth in the number of vehicles The research proposes an Intelligent public transportation system where info... Due to fast-growing urbanization,the traffic management system becomes a crucial problem owing to the rapid growth in the number of vehicles The research proposes an Intelligent public transportation system where informa-tion regarding all the buses connecting in a city will be gathered,processed and accurate bus arrival time prediction will be presented to the user.Various linear and time-varying parameters such as distance,waiting time at stops,red signal duration at a traffic signal,traffic density,turning density,rush hours,weather conditions,number of passengers on the bus,type of day,road type,average vehi-cle speed limit,current vehicle speed affecting traffic are used for the analysis.The proposed model exploits the feasibility and applicability of ELM in the travel time forecasting area.Multiple ELMs(MELM)for explicitly training dynamic,road and trajectory information are used in the proposed approach.A large-scale dataset(historical data)obtained from Kerala State Road Transport Corporation is used for training.Simulations are carried out by using MATLAB R2021a.The experiments revealed that the efficiency of MELM is independent of the time of day and day of the week.It can manage huge volumes of data with less human intervention at greater learning speeds.It is found MELM yields prediction with accuracy in the range of 96.7%to 99.08%.The MAE value is between 0.28 to 1.74 minutes with the proposed approach.The study revealed that there could be regularity in bus usage and daily bus rides are predictable with a better degree of accuracy.The research has proved that MELM is superior for arrival time pre-dictions in terms of accuracy and error,compared with other approaches. 展开更多
关键词 Arrival time prediction public transportation extreme learning machine traffic density
下载PDF
基于FSSA-ELM的模拟电路故障诊断方法 被引量:1
7
作者 陈晓娟 刘禹盟 +1 位作者 曲畅 张昭华 《半导体技术》 北大核心 2024年第1期77-84,共8页
在大规模电路中,模拟电路的故障率高达80%。针对模拟电路故障诊断方法准确率低、耗时长的问题,提出了一种分数阶麻雀搜索算法结合极限学习机(FSSA-ELM)的模拟电路故障诊断方法。利用核主成分分析与局部线性嵌入(KPCA-LLE)联合方式对电... 在大规模电路中,模拟电路的故障率高达80%。针对模拟电路故障诊断方法准确率低、耗时长的问题,提出了一种分数阶麻雀搜索算法结合极限学习机(FSSA-ELM)的模拟电路故障诊断方法。利用核主成分分析与局部线性嵌入(KPCA-LLE)联合方式对电路故障数据进行特征提取,通过分数阶与麻雀搜索算法(SSA)相融合,对极限学习机(ELM)的权重和阈值进行寻优,将提取后的特征数据输入到FSSA-ELM模型中进行训练和测试。T型反馈网络反相比例运算电路诊断实例表明,FSSA-ELM的故障诊断用时相较于SSA-ELM缩短了891 s,单故障诊断准确率可达972%,比SSA-ELM和ELM分别提高了19%和28%;双故障诊断准确率可达95%,分别提高了04%和10%。该故障诊断方法准确率高、耗时短,具有较强的模拟电路故障检测能力。 展开更多
关键词 模拟电路 故障诊断 分数维度 麻雀搜索算法(SSA) 极限学习机(elm)
下载PDF
基于KPCA-PSO-ELM算法的地表水化学需氧量紫外-可见吸收光谱检测研究 被引量:1
8
作者 郑培超 周椿棪 +5 位作者 王金梅 尹义同 张莉 吕强 曾金锐 何雨欣 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第3期707-713,共7页
化学需氧量(COD)是水质检测重要指标之一,反映水体有机物含量。传统的COD化学检测方法存在操作繁琐,等待时间长,二次污染等缺点。紫外-可见吸收光谱法是目前水体化学需氧量检测中应用最为广泛的方法之一,具有检测快速、无污染等特点。... 化学需氧量(COD)是水质检测重要指标之一,反映水体有机物含量。传统的COD化学检测方法存在操作繁琐,等待时间长,二次污染等缺点。紫外-可见吸收光谱法是目前水体化学需氧量检测中应用最为广泛的方法之一,具有检测快速、无污染等特点。为了满足地表水化学需氧量快速、实时、在线监测等要求,采用紫外-可见吸收光谱进行测量,提出了内核主成分分析(KPCA)结合粒子群优化极限学习机(PSO-ELM)预测模型,满足当前对地表水化学需氧量快速、实时监测的要求。对光谱进行Savitzky-Golay(SG)滤波以降低随机噪声的影响;用积分光谱代替原光谱,以降低信号波动带来的影响;再将得到的光谱信息归一化,消除不同光谱数据量纲的影响。将预处理后的数据利用KPCA算法将全光谱数据压缩为5个特征,有效解决光谱信息冗余的问题;采用PSO算法对ELM的权重和偏置进行优化极大提高了模型的精度。对217个河流、长江及支流、湖库等地表水样本按照7∶3随机划分成训练集和测试集,并进行建模测试,其中训练集拟合优度(R2)为0.930 2、均方根误差(RMSE)为0.363 0 mg·L^(-1)、测试集拟合优度R2为0.931 9、均方根误差(RMSE)为0.400 7 mg·L^(-1)。为了验证提出的基于KPCA全光谱数据压缩方法对预测模型的提升效果,分别对比了主成分分析(PCA)、连续投影算法(SPA)、套索回归(LASSO)等特征处理算法。PCA-PSO-ELM模型的RMSE为0.715 1 mg·L^(-1)、 SPA-PSO-ELM模型的RMSE为0.473 7 mg·L^(-1)、 LASSO-PSO-ELM模型的RMSE为0.412 6 mg·L^(-1), KPCA-PSO-ELM模型较上述三种模型,RMSE分别降低了78.46%、 18.22%、 2.97%,结果表明KPCA是一种高效的光谱降维算法,能够有效消除光谱冗余信息,提升模型预测精度。基于KPCA-PSO-ELM预测模型结合紫外-可见吸收光谱可以实现对地表水COD快速、实时检测,为在线COD检测场景提供方法支撑。 展开更多
关键词 化学需氧量 紫外-可见吸收光谱 内核主成分分析 极限学习机
下载PDF
基于SSA-ELM神经网络控制器的光伏MPPT方法 被引量:2
9
作者 李文娟 徐伟健 +1 位作者 肖瀚 梁树威 《实验技术与管理》 CAS 北大核心 2024年第1期158-164,共7页
光伏电池板所处环境的非线性变化使得光伏电池的功率保持在最大功率点(maximum power point,MPP)非常困难。传统的最大功率点跟踪(maximum power point tracking,MPPT)方法普遍存在技术缺陷,无法满足当前需求。针对光伏发电MPPT问题,该... 光伏电池板所处环境的非线性变化使得光伏电池的功率保持在最大功率点(maximum power point,MPP)非常困难。传统的最大功率点跟踪(maximum power point tracking,MPPT)方法普遍存在技术缺陷,无法满足当前需求。针对光伏发电MPPT问题,该文提出了一种基于麻雀搜索算法优化的极限学习机(sparrow search algorithm-extreme learning machine,SSA-ELM)神经网络控制器的MPPT方法。与传统技术相比,该MPPT方法在稳定性、速度、超调和MPP的振荡等方面的效果均较好。使用MATLAB/Simulink平台进行仿真实验,验证了所提控制策略及理论分析的正确性。 展开更多
关键词 光伏电池 最大功率点跟踪 麻雀搜索算法 极限学习机
下载PDF
基于IAOA-KELM的储气库注采管柱内腐蚀速率预测 被引量:1
10
作者 骆正山 于瑶如 +1 位作者 骆济豪 王小完 《安全与环境学报》 CAS CSCD 北大核心 2024年第3期971-977,共7页
针对储气库注采管柱的内腐蚀速率预测问题,建立了基于阿基米德优化算法(Archimedes Optimization Algorithm,AOA)与核极限学习机(Kernel Extreme Learning Machine,KELM)相结合的模型提高腐蚀速率预测精度。通过引入佳点集、改进密度降... 针对储气库注采管柱的内腐蚀速率预测问题,建立了基于阿基米德优化算法(Archimedes Optimization Algorithm,AOA)与核极限学习机(Kernel Extreme Learning Machine,KELM)相结合的模型提高腐蚀速率预测精度。通过引入佳点集、改进密度降低因子、采用黄金正弦算法缩小搜索空间,提高局部开发能力,利用改进阿基米德优化算法(Improved Archimedes Optimization Algorithm,IAOA)优化KELM正则化系数(C)和核函数参数(γ),进而建立IAOA-KELM储气库注采管柱内腐蚀速率预测模型;使用MATLAB软件运用该模型对某注采管柱内腐蚀数据集进行学习与预测,将IAOA-KELM模型与KELM、粒子群优化算法(Particle Swarm Optimization,PSO)-KELM、AOA-KELM结果进行预测误差对比。结果表明,IAOA-KELM模型的预测值与实际值较为拟合,其E RMSE为0.65%,E MAE为0.39%,R 2为99.83%,均优于其他模型。研究表明,IAOA-KELM模型能够更为准确地预测储气库注采管柱内腐蚀速率,为储气库注采管柱的运维及储气库的健康管理提供参考。 展开更多
关键词 安全工程 地下储气库 注采管柱 核极限学习机 改进阿基米德优化算法 腐蚀速率
下载PDF
基于PSO−ELM的综采工作面液压支架姿态监测方法
11
作者 李磊 许春雨 +5 位作者 宋建成 田慕琴 宋单阳 张杰 郝振杰 马锐 《工矿自动化》 CSCD 北大核心 2024年第8期14-19,共6页
针对基于惯性测量单元的液压支架姿态解算方法会产生累计误差、校正结果不准确的问题,提出一种基于粒子群优化(PSO)−极限学习机(ELM)的综采工作面液压支架姿态监测方法。以液压支架顶梁俯仰角为监测对象,采用倾角传感器和陀螺仪采集液... 针对基于惯性测量单元的液压支架姿态解算方法会产生累计误差、校正结果不准确的问题,提出一种基于粒子群优化(PSO)−极限学习机(ELM)的综采工作面液压支架姿态监测方法。以液压支架顶梁俯仰角为监测对象,采用倾角传感器和陀螺仪采集液压支架顶梁支护姿态实时信息,对采集到的数据进行预处理,将处理后的数据输入PSO−ELM误差补偿模型中,得到解算误差预测值;同时通过卡尔曼滤波融合进行液压支架姿态解算,得到解算值;再用误差预测值对解算值进行误差补偿,从而求得更加准确的顶梁支护姿态数据。该方法只考虑加速度和角速度数据与解算误差的关系,不依赖具体的物理模型,可有效降低姿态解算累计误差。实验结果表明:液压支架顶梁俯仰角平均绝对误差由补偿前的1.4208°减少到0.0580°,且误差曲线具有良好的收敛性,验证了所提方法可持续稳定地监测液压支架的支护姿态。 展开更多
关键词 液压支架 顶梁俯仰角 姿态监测 误差补偿 粒子群优化 极限学习机 PSO−elm
下载PDF
基于BA-MKELM的微电网故障识别与定位 被引量:1
12
作者 吴忠强 卢雪琴 《计量学报》 CSCD 北大核心 2024年第2期253-260,共8页
提出一种基于贝叶斯算法优化多核极限学习机的微电网故障识别和定位方法。针对极限学习机输入参数和隐含层节点数随机选取导致回归能力不足的问题,引入核函数,将多项式与高斯径向基核函数加权组合构成多核极限学习机建立故障识别与定位... 提出一种基于贝叶斯算法优化多核极限学习机的微电网故障识别和定位方法。针对极限学习机输入参数和隐含层节点数随机选取导致回归能力不足的问题,引入核函数,将多项式与高斯径向基核函数加权组合构成多核极限学习机建立故障识别与定位模型,并采用贝叶斯算法对多核极限学习机相关参数进行优化,进一步提高模型的逼近能力。为了验证所提模型的故障识别与定位性能,选用极限学习机和多核极限学习机分别建立故障诊断模型进行比较分析。实验结果表明,所提方法能够高性能地识别和定位微电网中任何类型的故障,识别和定位精度更高。 展开更多
关键词 电学计量 微电网线路 故障识别和定位 贝叶斯算法 多核极限学习机 小波包分解
下载PDF
基于Adaboost-INGO-HKELM的变压器故障辨识 被引量:1
13
作者 谢国民 江海洋 《电力系统保护与控制》 EI CSCD 北大核心 2024年第5期94-104,共11页
针对目前变压器故障诊断准确率低的问题,提出一种多策略集成模型。首先通过等度量映射(isometric mapping, Isomap)对高维非线性不可分的变压器故障数据进行降维处理。其次,利用混合核极限学习机(hybrid kernel based extreme learning ... 针对目前变压器故障诊断准确率低的问题,提出一种多策略集成模型。首先通过等度量映射(isometric mapping, Isomap)对高维非线性不可分的变压器故障数据进行降维处理。其次,利用混合核极限学习机(hybrid kernel based extreme learning machine, HKELM)进行训练学习,考虑到HKELM模型易受参数影响,所以利用北方苍鹰优化算法(northern goshawk optimization, NGO)对其参数进行寻优。但由于NGO收敛速度较慢,易陷入局部最优,引入切比雪夫混沌映射、择优学习、自适应t分布联合策略对其进行改进。同时为了提高模型整体的准确率,通过结合Adaboost集成算法,构建Adaboost-INGO-HKELM变压器故障辨识模型。最后,将提出的Adaboost-INGO-HKELM模型与未进行降维处理的INGO-HKELM模型、Isomap-INGO-KELM模型、Adaboost-Isomap-GWO-SVM等7种模型的测试准确率进行对比。提出的Adaboost-INGO-HKELM模型的准确率可达96%,均高于其他模型,验证了该模型对变压器故障辨识具有很好的效果。 展开更多
关键词 故障诊断 油浸式变压器 Adaboost集成算法 切比雪夫混沌映射 混合核极限学习机 等度量映射
下载PDF
一种基于PSO-ELM的低渗透砂岩水淹层测井识别方法
14
作者 杨波 黄长兵 +2 位作者 何岩 李垚银 李路路 《断块油气田》 CAS CSCD 北大核心 2024年第4期645-651,共7页
水淹层测井识别对油田开发方案部署及提高采收率有着重要意义。新疆陆梁油田作业区某区块油层水淹类型主要为污水水淹,测井响应特征复杂多变,传统识别图版方法难以对水淹层有效识别。文中基于测井、地质、试油等资料,在水淹层测井响应... 水淹层测井识别对油田开发方案部署及提高采收率有着重要意义。新疆陆梁油田作业区某区块油层水淹类型主要为污水水淹,测井响应特征复杂多变,传统识别图版方法难以对水淹层有效识别。文中基于测井、地质、试油等资料,在水淹层测井响应特征分析基础上,提出了一种利用改进粒子群优化算法(Particle Swarm Optimization,PSO)及极限学习机(Extreme Learning Machine,ELM)的水淹层识别方法。首先,利用相关系数优选6个主控因素:RD,RS,GR,SP,DEN,AC。其次,采用改进粒子群算法对极限学习机模型进行参数寻优;最后,利用优化后的模型对研究区水淹层进行预测。结果表明,利用PSO-ELM模型识别水淹层,识别符合率达到91.7%,应用效果优于ELM模型及传统识别图版,为水淹层测井识别提供了新思路。 展开更多
关键词 相关系数 粒子群优化算法 极限学习机 水淹层识别
下载PDF
基于AdaBoost.M2-ISSA-ELM算法的电力变压器故障诊断方法
15
作者 王艳 王寅初 +3 位作者 赵洪山 李伟 连洪钵 康磊 《电力自动化设备》 EI CSCD 北大核心 2024年第9期205-211,218,共8页
为提高电力变压器故障诊断精度,将集成学习和群体智能优化算法相结合,提出一种电力变压器故障诊断方法。使用极限学习机(ELM)作为基学习算法,构建集成学习框架下的基分类器,并针对ELM模型性能受参数初始化影响较大、易陷入局部最优问题... 为提高电力变压器故障诊断精度,将集成学习和群体智能优化算法相结合,提出一种电力变压器故障诊断方法。使用极限学习机(ELM)作为基学习算法,构建集成学习框架下的基分类器,并针对ELM模型性能受参数初始化影响较大、易陷入局部最优问题,引入基于正弦优化的改进麻雀搜索算法(ISSA)优化相关参数,提高基分类器的分类性能。使用改进的自适应增强(AdaBoost.M2)算法构建集成学习模型,扩展基分类器的输出,并引入伪损失函数替代传统AdaBoost算法中的加权误差,以增强集成分类器综合表达能力,得到基于AdaBoost.M2-ISSA-ELM算法的电力变压器故障诊断模型,进一步提高模型识别精度。通过909组油中溶解气体分析(DGA)样本对所提方法进行实例分析,结果表明该方法具有较好的诊断精度和分类性能,能够实现电力变压器故障类型的准确识别。 展开更多
关键词 电力变压器 故障诊断 集成学习 智能优化算法 极限学习机
下载PDF
基于ikPCA-FABAS-KELM的短期风电功率预测 被引量:1
16
作者 徐武 范鑫豪 +2 位作者 沈智方 刘洋 刘武 《南京信息工程大学学报》 CAS 北大核心 2024年第3期321-331,共11页
为了增强在短期风电功率预测领域中传统数据驱动机器学习模型的精度,提出基于ikPCA-FABAS-KELM的短期风电功率预测模型.首先,对主成分分析进行改进,提出可逆核主成分分析(ikPCA),在保证数据特征的同时,降低输入数据的复杂度,以提升模型... 为了增强在短期风电功率预测领域中传统数据驱动机器学习模型的精度,提出基于ikPCA-FABAS-KELM的短期风电功率预测模型.首先,对主成分分析进行改进,提出可逆核主成分分析(ikPCA),在保证数据特征的同时,降低输入数据的复杂度,以提升模型运行速度;其次,引入萤火虫个体吸引策略对天牛须算法(BAS)进行改进,提出FABAS算法;最后,利用FABAS算法对核极限学习机(KELM)的正则化参数C和核参数γ进行寻优,降低人为因素对模型盲目训练的影响,提高模型预测精度.仿真结果显示,提出的预测模型有效提高了传统模型的预测精度. 展开更多
关键词 短期风电功率预测 萤火虫算法 天牛须算法 核主成分分析 核极限学习机
下载PDF
紫外吸收光谱结合SPA-ELM算法的水体磷酸根离子检测研究
17
作者 郑培超 尹义同 +4 位作者 王金梅 周椿棪 张莉 曾金锐 吕强 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第1期82-87,共6页
在工业锅炉中随着水蒸气蒸发,大量的钙镁离子留在炉水中,如果不加处理,在水冷管中会形成水垢,造成爆管停炉。为了保障设备的安全运行,消除安全隐患,工业上通过维持水中一定含量的磷酸根离子来去除锅炉中的钙、镁水垢。传统的磷酸根离子... 在工业锅炉中随着水蒸气蒸发,大量的钙镁离子留在炉水中,如果不加处理,在水冷管中会形成水垢,造成爆管停炉。为了保障设备的安全运行,消除安全隐患,工业上通过维持水中一定含量的磷酸根离子来去除锅炉中的钙、镁水垢。传统的磷酸根离子检测技术主要有比色法、分光光度法、色谱法、电位法等,这些方法前期处理步骤较繁琐且耗时较长。光谱法是通过测定物质的吸收光谱并建立和浓度关系的数学模型,对物质浓度定量的一种分析方法。为了满足磷酸根离子快速、实时测量的要求,提出了一种基于紫外吸收光谱结合SPA-ELM算法快速测量磷酸根离子的方法。按照我国《工业锅炉水质GB/T 1576—2018》中所规定的进入热水锅炉前的水质参数要求,配置37份浓度范围在5~100 mg·L^(-1)磷酸根溶液,使用搭建的实验装置,采集紫外吸收光谱。使用SPXY将样品按照7∶3的比例随机划分训练集、测试集;使用Savitzky-Golay(S-G)滤波对数据预处理以提高光谱的信噪比;通过连续投影算法(SPA)压缩光谱数据,筛选出5个与磷酸根强相关的特征波长;使用极限学习机(ELM)将特征波长处的吸光度与样本浓度进行拟合,以决定系数R2和均方根误差RMSE作为模型评价指标,建立磷酸根离子的回归模型。采用所提出的建模方法所建立的模型训练集的R2与RMSE分别为0.9972和1.3015 mg·L^(-1),测试集的R^(2)与RMSE分别为0.9995和0.5174 mg·L^(-1)。为了验证所提出的SPA-ELM预测模型效果,另外建立了LASSO-ELM、PCA-ELM、SPA-PLS和SPA-SVR四种预测模型进行对比。实验结果表明,SPA-ELM建立的预测模型的R2和RMSE均优于其他四种预测模型,说明采用的特征选择方法和回归方法均为最优,能够对磷酸根浓度范围为5~100 mg·L^(-1)的水体进行准确预测,为水中磷酸根离子的检测提供了一种新的解决方法。 展开更多
关键词 磷酸根离子 紫外吸收光谱 连续投影算法 极限学习机
下载PDF
基于WOA-ELM的空间分层结构FBG三维振动加速度传感器非线性解耦
18
作者 孙世政 武宇峰 +2 位作者 何江 徐向阳 陈仁祥 《仪器仪表学报》 EI CAS CSCD 北大核心 2024年第7期139-147,共9页
针对三维振动加速度传感器存在的维间耦合干扰问题,以空间分层结构光纤布拉格光栅(FBG)三维振动加速度传感器为研究对象,阐述了三维振动加速度传感的基本原理。其次,构建了振动加速度动态标定实验平台,并分析了传感器的结构耦合特性。最... 针对三维振动加速度传感器存在的维间耦合干扰问题,以空间分层结构光纤布拉格光栅(FBG)三维振动加速度传感器为研究对象,阐述了三维振动加速度传感的基本原理。其次,构建了振动加速度动态标定实验平台,并分析了传感器的结构耦合特性。最后,提出一种基于鲸鱼算法优化极限学习机(WOA-ELM)的神经网络模型并进行了非线性解耦实验,其结果显示,在x、y、z三轴的平均测量误差分别降至1.58%、1.17%、0.95%,平均I类和II类误差最大值分别降至0.73%和0.37%。为验证解耦效果,将WOA-ELM与其他算法等进行解耦效果对比。结果表明,WOA-ELM更有效地降低三维振动加速度传感器的维间耦合干扰,提高测量精度。 展开更多
关键词 光纤布拉格光栅 三维振动加速度传感器 维间耦合 鲸鱼优化算法 极限学习机
下载PDF
基于RCMFME和AO-ELM的齿轮箱损伤识别策略
19
作者 沈羽 赵旭 《机电工程》 CAS 北大核心 2024年第2期226-235,共10页
针对模糊熵只考虑信号的局部特征而忽略信号的全局特征,导致齿轮箱故障识别的准确率不佳的问题,提出了一种基于精细复合多尺度模糊测度熵(RCMFME)、天鹰优化器(AO)优化极限学习机(ELM)的齿轮箱故障诊断方法。首先,在精细复合多尺度模糊... 针对模糊熵只考虑信号的局部特征而忽略信号的全局特征,导致齿轮箱故障识别的准确率不佳的问题,提出了一种基于精细复合多尺度模糊测度熵(RCMFME)、天鹰优化器(AO)优化极限学习机(ELM)的齿轮箱故障诊断方法。首先,在精细复合多尺度模糊熵的基础上,对矢量的构造方式进行了改进,提出了能够同时考虑时间序列局部特征和全局特征的RCMFME方法;随后,利用RCMFME指标提取了齿轮箱振动信号的熵值,组建了故障特征向量;接着,利用AO算法对极限学习机的参数进行了自适应搜索,生成了参数最优的多类别分类器;最后,将训练样本的故障特征向量输入至AO-ELM分类模型中进行了模型训练,以构造性能最优的分类器,并实现了对齿轮箱测试样本的故障识别目的;利用两种齿轮箱振动数据集进行了实验,在识别准确率和识别稳定性方面,与相关的特征提取方法进行了对比。研究结果表明:采用基于RCMFME和AO-ELM的故障诊断方法能够分别取得100%和98%的分类准确率,平均识别准确率分别达到了100%和98%,优于精细复合多尺度全局模糊熵(RCMGFE)、精细复合多尺度模糊熵(RCMFE)、精细复合多尺度样本熵(RCMSE)。该方法具有显著的应用潜力。 展开更多
关键词 齿轮箱故障诊断 精细复合多尺度模糊测度熵 天鹰优化器 极限学习机 AO-elm分类模型 特征提取
下载PDF
基于手机传感器识别行人步态的PSO-ELM算法
20
作者 郭英 李兆博 +1 位作者 刘如飞 黄昊东 《中国惯性技术学报》 EI CSCD 北大核心 2024年第8期795-802,811,共9页
针对因手机携带位置不同对传感器产生干扰而导致行人步态识别准确率降低的问题,提出了一种粒子群优化极限学习机(PSO-ELM)识别算法。首先,基于极限学习机(ELM)分类方法,借助分层ELM多层降维的特点,利用粒子群优化算法对ELM算法参数进行... 针对因手机携带位置不同对传感器产生干扰而导致行人步态识别准确率降低的问题,提出了一种粒子群优化极限学习机(PSO-ELM)识别算法。首先,基于极限学习机(ELM)分类方法,借助分层ELM多层降维的特点,利用粒子群优化算法对ELM算法参数进行寻优,设计有效识别行人手机携带位置的分层PSO-ELM分类方法。然后,通过线性判别分析的降维算法和PSO-ELM完成对行人步态的有效识别。实验使用Android手机对五种携带位置四种步态下的加速度和角速度数据进行采集,结果表明:在识别手机携带位置层面,训练集与测试集的识别准确率分别达到99.54%、99.47%;在识别行人步态层面,两种准确率分别达到95.74%、95.31%,证明所提算法具有较高的步态识别准确率。 展开更多
关键词 行人步态识别 手机传感器 极限学习机 粒子群优化算法 线性判别分析
下载PDF
上一页 1 2 176 下一页 到第
使用帮助 返回顶部