The machine learning models of multiple linear regression(MLR),support vector regression(SVR),and extreme learning ma-chine(ELM)and the proposed ELM models of online sequential ELM(OS-ELM)and OS-ELM with forgetting me...The machine learning models of multiple linear regression(MLR),support vector regression(SVR),and extreme learning ma-chine(ELM)and the proposed ELM models of online sequential ELM(OS-ELM)and OS-ELM with forgetting mechanism(FOS-ELM)are applied in the prediction of the lime utilization ratio of dephosphorization in the basic oxygen furnace steelmaking process.The ELM model exhibites the best performance compared with the models of MLR and SVR.OS-ELM and FOS-ELM are applied for sequential learning and model updating.The optimal number of samples in validity term of the FOS-ELM model is determined to be 1500,with the smallest population mean absolute relative error(MARE)value of 0.058226 for the population.The variable importance analysis reveals lime weight,initial P content,and hot metal weight as the most important variables for the lime utilization ratio.The lime utilization ratio increases with the decrease in lime weight and the increases in the initial P content and hot metal weight.A prediction system based on FOS-ELM is applied in actual industrial production for one month.The hit ratios of the predicted lime utilization ratio in the error ranges of±1%,±3%,and±5%are 61.16%,90.63%,and 94.11%,respectively.The coefficient of determination,MARE,and root mean square error are 0.8670,0.06823,and 1.4265,respectively.The system exhibits desirable performance for applications in actual industrial pro-duction.展开更多
Wi Fi and fingerprinting localization method have been a hot topic in indoor positioning because of their universality and location-related features.The basic assumption of fingerprinting localization is that the rece...Wi Fi and fingerprinting localization method have been a hot topic in indoor positioning because of their universality and location-related features.The basic assumption of fingerprinting localization is that the received signal strength indication(RSSI)distance is accord with the location distance.Therefore,how to efficiently match the current RSSI of the user with the RSSI in the fingerprint database is the key to achieve high-accuracy localization.In this paper,a particle swarm optimization-extreme learning machine(PSO-ELM)algorithm is proposed on the basis of the original fingerprinting localization.Firstly,we collect the RSSI of the experimental area to construct the fingerprint database,and the ELM algorithm is applied to the online stages to determine the corresponding relation between the location of the terminal and the RSSI it receives.Secondly,PSO algorithm is used to improve the bias and weight of ELM neural network,and the global optimal results are obtained.Finally,extensive simulation results are presented.It is shown that the proposed algorithm can effectively reduce mean error of localization and improve positioning accuracy when compared with K-Nearest Neighbor(KNN),Kmeans and Back-propagation(BP)algorithms.展开更多
Accurately predicting the remaining useful life(RUL)of bearings in mining rotating equipment is vital for mining enterprises.This research aims to distinguish the features associated with the RUL of bearings and propo...Accurately predicting the remaining useful life(RUL)of bearings in mining rotating equipment is vital for mining enterprises.This research aims to distinguish the features associated with the RUL of bearings and propose a prediction model based on these selected features.This study proposes a hybrid predictive model to assess the RUL of rolling element bearings.The proposed model begins with the pre-processing of bearing vibration signals to reconstruct sixty time-domain features.The hybrid model selects relevant features from the sixty time-domain features of the vibration signal by adopting the RReliefF feature selection algorithm.Subsequently,the extreme learning machine(ELM)approach is applied to develop a predictive model of RUL based on the optimal features.The model is trained by optimizing its parameters via the grid search approach.The training datasets are adjusted to make them most suitable for the regression model using the cross-validation method.The proposed hybrid model is analyzed and validated using the vibration data taken from the public XJTU-SY rolling element-bearing database.The comparison is constructed with other traditional models.The experimental test results demonstrated that the proposed approach can predict the RUL of bearings with a reliable degree of accuracy.展开更多
The paper presents an innovative approach towards agricultural insurance underwriting and risk pricing through the development of an Extreme Machine Learning (ELM) Actuarial Intelligent Model. This model integrates di...The paper presents an innovative approach towards agricultural insurance underwriting and risk pricing through the development of an Extreme Machine Learning (ELM) Actuarial Intelligent Model. This model integrates diverse datasets, including climate change scenarios, crop types, farm sizes, and various risk factors, to automate underwriting decisions and estimate loss reserves in agricultural insurance. The study conducts extensive exploratory data analysis, model building, feature engineering, and validation to demonstrate the effectiveness of the proposed approach. Additionally, the paper discusses the application of robust tests, stress tests, and scenario tests to assess the model’s resilience and adaptability to changing market conditions. Overall, the research contributes to advancing actuarial science in agricultural insurance by leveraging advanced machine learning techniques for enhanced risk management and decision-making.展开更多
Software maintenance is the process of fixing,modifying,and improving software deliverables after they are delivered to the client.Clients can benefit from offshore software maintenance outsourcing(OSMO)in different w...Software maintenance is the process of fixing,modifying,and improving software deliverables after they are delivered to the client.Clients can benefit from offshore software maintenance outsourcing(OSMO)in different ways,including time savings,cost savings,and improving the software quality and value.One of the hardest challenges for the OSMO vendor is to choose a suitable project among several clients’projects.The goal of the current study is to recommend a machine learning-based decision support system that OSMO vendors can utilize to forecast or assess the project of OSMO clients.The projects belong to OSMO vendors,having offices in developing countries while providing services to developed countries.In the current study,Extreme Learning Machine’s(ELM’s)variant called Deep Extreme Learning Machines(DELMs)is used.A novel dataset consisting of 195 projects data is proposed to train the model and to evaluate the overall efficiency of the proposed model.The proposed DELM’s based model evaluations achieved 90.017%training accuracy having a value with 1.412×10^(-3) Root Mean Square Error(RMSE)and 85.772%testing accuracy with 1.569×10^(-3) RMSE with five DELMs hidden layers.The results express that the suggested model has gained a notable recognition rate in comparison to any previous studies.The current study also concludes DELMs as the most applicable and useful technique for OSMO client’s project assessment.展开更多
Due to fast-growing urbanization,the traffic management system becomes a crucial problem owing to the rapid growth in the number of vehicles The research proposes an Intelligent public transportation system where info...Due to fast-growing urbanization,the traffic management system becomes a crucial problem owing to the rapid growth in the number of vehicles The research proposes an Intelligent public transportation system where informa-tion regarding all the buses connecting in a city will be gathered,processed and accurate bus arrival time prediction will be presented to the user.Various linear and time-varying parameters such as distance,waiting time at stops,red signal duration at a traffic signal,traffic density,turning density,rush hours,weather conditions,number of passengers on the bus,type of day,road type,average vehi-cle speed limit,current vehicle speed affecting traffic are used for the analysis.The proposed model exploits the feasibility and applicability of ELM in the travel time forecasting area.Multiple ELMs(MELM)for explicitly training dynamic,road and trajectory information are used in the proposed approach.A large-scale dataset(historical data)obtained from Kerala State Road Transport Corporation is used for training.Simulations are carried out by using MATLAB R2021a.The experiments revealed that the efficiency of MELM is independent of the time of day and day of the week.It can manage huge volumes of data with less human intervention at greater learning speeds.It is found MELM yields prediction with accuracy in the range of 96.7%to 99.08%.The MAE value is between 0.28 to 1.74 minutes with the proposed approach.The study revealed that there could be regularity in bus usage and daily bus rides are predictable with a better degree of accuracy.The research has proved that MELM is superior for arrival time pre-dictions in terms of accuracy and error,compared with other approaches.展开更多
光伏电池板所处环境的非线性变化使得光伏电池的功率保持在最大功率点(maximum power point,MPP)非常困难。传统的最大功率点跟踪(maximum power point tracking,MPPT)方法普遍存在技术缺陷,无法满足当前需求。针对光伏发电MPPT问题,该...光伏电池板所处环境的非线性变化使得光伏电池的功率保持在最大功率点(maximum power point,MPP)非常困难。传统的最大功率点跟踪(maximum power point tracking,MPPT)方法普遍存在技术缺陷,无法满足当前需求。针对光伏发电MPPT问题,该文提出了一种基于麻雀搜索算法优化的极限学习机(sparrow search algorithm-extreme learning machine,SSA-ELM)神经网络控制器的MPPT方法。与传统技术相比,该MPPT方法在稳定性、速度、超调和MPP的振荡等方面的效果均较好。使用MATLAB/Simulink平台进行仿真实验,验证了所提控制策略及理论分析的正确性。展开更多
基金supported by the National Natural Science Foundation of China (No.U1960202).
文摘The machine learning models of multiple linear regression(MLR),support vector regression(SVR),and extreme learning ma-chine(ELM)and the proposed ELM models of online sequential ELM(OS-ELM)and OS-ELM with forgetting mechanism(FOS-ELM)are applied in the prediction of the lime utilization ratio of dephosphorization in the basic oxygen furnace steelmaking process.The ELM model exhibites the best performance compared with the models of MLR and SVR.OS-ELM and FOS-ELM are applied for sequential learning and model updating.The optimal number of samples in validity term of the FOS-ELM model is determined to be 1500,with the smallest population mean absolute relative error(MARE)value of 0.058226 for the population.The variable importance analysis reveals lime weight,initial P content,and hot metal weight as the most important variables for the lime utilization ratio.The lime utilization ratio increases with the decrease in lime weight and the increases in the initial P content and hot metal weight.A prediction system based on FOS-ELM is applied in actual industrial production for one month.The hit ratios of the predicted lime utilization ratio in the error ranges of±1%,±3%,and±5%are 61.16%,90.63%,and 94.11%,respectively.The coefficient of determination,MARE,and root mean square error are 0.8670,0.06823,and 1.4265,respectively.The system exhibits desirable performance for applications in actual industrial pro-duction.
基金supported in part by the National Natural Science Foundation of China(U2001213 and 61971191)in part by the Beijing Natural Science Foundation under Grant L182018 and L201011+2 种基金in part by National Key Research and Development Project(2020YFB1807204)in part by the Key project of Natural Science Foundation of Jiangxi Province(20202ACBL202006)in part by the Innovation Fund Designated for Graduate Students of Jiangxi Province(YC2020-S321)。
文摘Wi Fi and fingerprinting localization method have been a hot topic in indoor positioning because of their universality and location-related features.The basic assumption of fingerprinting localization is that the received signal strength indication(RSSI)distance is accord with the location distance.Therefore,how to efficiently match the current RSSI of the user with the RSSI in the fingerprint database is the key to achieve high-accuracy localization.In this paper,a particle swarm optimization-extreme learning machine(PSO-ELM)algorithm is proposed on the basis of the original fingerprinting localization.Firstly,we collect the RSSI of the experimental area to construct the fingerprint database,and the ELM algorithm is applied to the online stages to determine the corresponding relation between the location of the terminal and the RSSI it receives.Secondly,PSO algorithm is used to improve the bias and weight of ELM neural network,and the global optimal results are obtained.Finally,extensive simulation results are presented.It is shown that the proposed algorithm can effectively reduce mean error of localization and improve positioning accuracy when compared with K-Nearest Neighbor(KNN),Kmeans and Back-propagation(BP)algorithms.
基金supported by the Anhui Provincial Key Research and Development Project(202104a07020005)the University Synergy Innovation Program of Anhui Province(GXXT-2022-019)+1 种基金the Institute of Energy,Hefei Comprehensive National Science Center under Grant No.21KZS217Scientific Research Foundation for High-Level Talents of Anhui University of Science and Technology(13210024).
文摘Accurately predicting the remaining useful life(RUL)of bearings in mining rotating equipment is vital for mining enterprises.This research aims to distinguish the features associated with the RUL of bearings and propose a prediction model based on these selected features.This study proposes a hybrid predictive model to assess the RUL of rolling element bearings.The proposed model begins with the pre-processing of bearing vibration signals to reconstruct sixty time-domain features.The hybrid model selects relevant features from the sixty time-domain features of the vibration signal by adopting the RReliefF feature selection algorithm.Subsequently,the extreme learning machine(ELM)approach is applied to develop a predictive model of RUL based on the optimal features.The model is trained by optimizing its parameters via the grid search approach.The training datasets are adjusted to make them most suitable for the regression model using the cross-validation method.The proposed hybrid model is analyzed and validated using the vibration data taken from the public XJTU-SY rolling element-bearing database.The comparison is constructed with other traditional models.The experimental test results demonstrated that the proposed approach can predict the RUL of bearings with a reliable degree of accuracy.
文摘The paper presents an innovative approach towards agricultural insurance underwriting and risk pricing through the development of an Extreme Machine Learning (ELM) Actuarial Intelligent Model. This model integrates diverse datasets, including climate change scenarios, crop types, farm sizes, and various risk factors, to automate underwriting decisions and estimate loss reserves in agricultural insurance. The study conducts extensive exploratory data analysis, model building, feature engineering, and validation to demonstrate the effectiveness of the proposed approach. Additionally, the paper discusses the application of robust tests, stress tests, and scenario tests to assess the model’s resilience and adaptability to changing market conditions. Overall, the research contributes to advancing actuarial science in agricultural insurance by leveraging advanced machine learning techniques for enhanced risk management and decision-making.
基金fully funded by Universiti Teknologi Malaysia under the UTM Fundamental Research Grant(UTMFR)with Cost Center No Q.K130000.2556.21H14.
文摘Software maintenance is the process of fixing,modifying,and improving software deliverables after they are delivered to the client.Clients can benefit from offshore software maintenance outsourcing(OSMO)in different ways,including time savings,cost savings,and improving the software quality and value.One of the hardest challenges for the OSMO vendor is to choose a suitable project among several clients’projects.The goal of the current study is to recommend a machine learning-based decision support system that OSMO vendors can utilize to forecast or assess the project of OSMO clients.The projects belong to OSMO vendors,having offices in developing countries while providing services to developed countries.In the current study,Extreme Learning Machine’s(ELM’s)variant called Deep Extreme Learning Machines(DELMs)is used.A novel dataset consisting of 195 projects data is proposed to train the model and to evaluate the overall efficiency of the proposed model.The proposed DELM’s based model evaluations achieved 90.017%training accuracy having a value with 1.412×10^(-3) Root Mean Square Error(RMSE)and 85.772%testing accuracy with 1.569×10^(-3) RMSE with five DELMs hidden layers.The results express that the suggested model has gained a notable recognition rate in comparison to any previous studies.The current study also concludes DELMs as the most applicable and useful technique for OSMO client’s project assessment.
文摘Due to fast-growing urbanization,the traffic management system becomes a crucial problem owing to the rapid growth in the number of vehicles The research proposes an Intelligent public transportation system where informa-tion regarding all the buses connecting in a city will be gathered,processed and accurate bus arrival time prediction will be presented to the user.Various linear and time-varying parameters such as distance,waiting time at stops,red signal duration at a traffic signal,traffic density,turning density,rush hours,weather conditions,number of passengers on the bus,type of day,road type,average vehi-cle speed limit,current vehicle speed affecting traffic are used for the analysis.The proposed model exploits the feasibility and applicability of ELM in the travel time forecasting area.Multiple ELMs(MELM)for explicitly training dynamic,road and trajectory information are used in the proposed approach.A large-scale dataset(historical data)obtained from Kerala State Road Transport Corporation is used for training.Simulations are carried out by using MATLAB R2021a.The experiments revealed that the efficiency of MELM is independent of the time of day and day of the week.It can manage huge volumes of data with less human intervention at greater learning speeds.It is found MELM yields prediction with accuracy in the range of 96.7%to 99.08%.The MAE value is between 0.28 to 1.74 minutes with the proposed approach.The study revealed that there could be regularity in bus usage and daily bus rides are predictable with a better degree of accuracy.The research has proved that MELM is superior for arrival time pre-dictions in terms of accuracy and error,compared with other approaches.
文摘光伏电池板所处环境的非线性变化使得光伏电池的功率保持在最大功率点(maximum power point,MPP)非常困难。传统的最大功率点跟踪(maximum power point tracking,MPPT)方法普遍存在技术缺陷,无法满足当前需求。针对光伏发电MPPT问题,该文提出了一种基于麻雀搜索算法优化的极限学习机(sparrow search algorithm-extreme learning machine,SSA-ELM)神经网络控制器的MPPT方法。与传统技术相比,该MPPT方法在稳定性、速度、超调和MPP的振荡等方面的效果均较好。使用MATLAB/Simulink平台进行仿真实验,验证了所提控制策略及理论分析的正确性。