A grazing incidence flat-field spectrograph using a concave grating was constructed to measure extreme ultraviolet (EUV) emission from a CO 2 laser-produced tin plasma throughout the wavelength region of 5 nm to 20 ...A grazing incidence flat-field spectrograph using a concave grating was constructed to measure extreme ultraviolet (EUV) emission from a CO 2 laser-produced tin plasma throughout the wavelength region of 5 nm to 20 nm for lithography. Spectral efficiency of the EUV emission around 13.5 nm from plate, cavity, and thin foil tin targets was studied. By translating the focusing lens along the laser axis, the dependence of EUV spectra on the amount of defocus was investigated. The results showed that the spectral efficiency was higher for the cavity target in comparison to the plate or foil target, while it decreased with an increase in the defocus distance. The source's spectra and the EUV emission intensity normalized to the incident pulse energy at 45 from the target normal were characterized for the in-band (2% of bandwidth) region as a function of laser energy spanning from 46 mJ to 600 mJ for the pure tin plate target. The energy normalized EUV emission was found to increase with the increasing incident pulse energy. It reached the optimum value for the laser energy of around 343 mJ, after which it dropped rapidly.展开更多
Lensless imaging is an approach to microscopy in which a high-resolution image of an object is reconstructed from one or more measured diffraction patterns,providing a solution in situations where the use of imaging o...Lensless imaging is an approach to microscopy in which a high-resolution image of an object is reconstructed from one or more measured diffraction patterns,providing a solution in situations where the use of imaging optics is not possible.However,current lensless imaging methods are typically limited by the need for a light source with a narrow,stable and accurately known spectrum.We have developed a general approach to lensless imaging without spectral bandwidth limitations or sample requirements.We use two time-delayed coherent light pulses and show that scanning the pulse-to-pulse time delay allows the reconstruction of diffraction-limited images for all the spectral components in the pulse.In addition,we introduce an iterative phase retrieval algorithm that uses these spectrally resolved Fresnel diffraction patterns to obtain high-resolution images of complex extended objects.We demonstrate this two-pulse imaging method with octave-spanning visible light sources,in both transmission and reflection geometries,and with broadband extreme-ultraviolet radiation from a high-harmonic generation source.Our approach enables effective use of low-flux ultra-broadband sources,such as table-top high-harmonic generation systems,for high-resolution imaging.展开更多
The dynamic global core plasma model(DGCPM) is used in this paper to calculate the He+ density distribution of the Earth's plasmasphere and to investigate the configurations and 30.4 nm radiation properties of the...The dynamic global core plasma model(DGCPM) is used in this paper to calculate the He+ density distribution of the Earth's plasmasphere and to investigate the configurations and 30.4 nm radiation properties of the plasmasphere.Validation comparisons between the simulation results and IMAGE mission observations show:That the equatorial structure of the plasmapause is mainly located near 5.5 RE and the typical scale of plasmasphere shrinking or expansion within 10 min is approximately 0.1 RE;that the plasmaspheric shoulders are formed and rotate noon-ward from the dawn sector under the conditions of strong southward turning of the interplanetary magnetic field(IMF);that the plasmaspheric plumes will rotate dawn-ward from the night sector and become narrow for the southward turning of the IMF.The simulated images from the lunar orbit show that the plasmasphere locating within the geocentric distance of 5.5 RE corresponds to field of view(FOV) of 10.7°×10.7° for the moon-based EUV imager,and that the 30.4 nm radiation intensity of the plasmasphere is 0.1-11.4 R.The plasmaspheric shoulders and plumes locating toward the moon-side are for the first time simulated with typical scale level of 0.1 RE from the side view of the moon.These simulated results provide an important theoretical basis for the lunar-based EUV camera design.展开更多
In this paper,a CO_(2) laser induced discharge plasma extreme ultraviolet(EUV)source experimental device was established.The optical emission spectroscopy was used to diagnose the characteristics of the plasma,and the...In this paper,a CO_(2) laser induced discharge plasma extreme ultraviolet(EUV)source experimental device was established.The optical emission spectroscopy was used to diagnose the characteristics of the plasma,and the evolution of electron temperature and electron density with time was obtained.The influence of discharge voltage on plasma parameters was analyzed and discussed.The EUV radiation characteristics of the plasma were investigated by self-made grazing incidence EUV spectrometer.The EUV radiation intensity and conversion efficiency were discussed.展开更多
基金supported by the Scientific Research Foundation of the Education Department of Hubei Province (No.Q20131512)National Natural Science Foundation of China (No.61078024)
文摘A grazing incidence flat-field spectrograph using a concave grating was constructed to measure extreme ultraviolet (EUV) emission from a CO 2 laser-produced tin plasma throughout the wavelength region of 5 nm to 20 nm for lithography. Spectral efficiency of the EUV emission around 13.5 nm from plate, cavity, and thin foil tin targets was studied. By translating the focusing lens along the laser axis, the dependence of EUV spectra on the amount of defocus was investigated. The results showed that the spectral efficiency was higher for the cavity target in comparison to the plate or foil target, while it decreased with an increase in the defocus distance. The source's spectra and the EUV emission intensity normalized to the incident pulse energy at 45 from the target normal were characterized for the in-band (2% of bandwidth) region as a function of laser energy spanning from 46 mJ to 600 mJ for the pure tin plate target. The energy normalized EUV emission was found to increase with the increasing incident pulse energy. It reached the optimum value for the laser energy of around 343 mJ, after which it dropped rapidly.
基金This work is financed in part by an NWO-groot investment grant of the Netherlands Organisation for Scientific Research(NWO)and Laserlab Europe(JRA Bioptichal)SW acknowledges support from NWO Veni grant 680-47-402.
文摘Lensless imaging is an approach to microscopy in which a high-resolution image of an object is reconstructed from one or more measured diffraction patterns,providing a solution in situations where the use of imaging optics is not possible.However,current lensless imaging methods are typically limited by the need for a light source with a narrow,stable and accurately known spectrum.We have developed a general approach to lensless imaging without spectral bandwidth limitations or sample requirements.We use two time-delayed coherent light pulses and show that scanning the pulse-to-pulse time delay allows the reconstruction of diffraction-limited images for all the spectral components in the pulse.In addition,we introduce an iterative phase retrieval algorithm that uses these spectrally resolved Fresnel diffraction patterns to obtain high-resolution images of complex extended objects.We demonstrate this two-pulse imaging method with octave-spanning visible light sources,in both transmission and reflection geometries,and with broadband extreme-ultraviolet radiation from a high-harmonic generation source.Our approach enables effective use of low-flux ultra-broadband sources,such as table-top high-harmonic generation systems,for high-resolution imaging.
基金supported by the National Natural Science Foundation of China (Grants No. 40774098,40774079 and 40890160)the National Hi-Tech Research and Development Program of China ("863" Project) (Grant No.2007AA12Z314)the Chinese Academy of Sciences Innovation Program
文摘The dynamic global core plasma model(DGCPM) is used in this paper to calculate the He+ density distribution of the Earth's plasmasphere and to investigate the configurations and 30.4 nm radiation properties of the plasmasphere.Validation comparisons between the simulation results and IMAGE mission observations show:That the equatorial structure of the plasmapause is mainly located near 5.5 RE and the typical scale of plasmasphere shrinking or expansion within 10 min is approximately 0.1 RE;that the plasmaspheric shoulders are formed and rotate noon-ward from the dawn sector under the conditions of strong southward turning of the interplanetary magnetic field(IMF);that the plasmaspheric plumes will rotate dawn-ward from the night sector and become narrow for the southward turning of the IMF.The simulated images from the lunar orbit show that the plasmasphere locating within the geocentric distance of 5.5 RE corresponds to field of view(FOV) of 10.7°×10.7° for the moon-based EUV imager,and that the 30.4 nm radiation intensity of the plasmasphere is 0.1-11.4 R.The plasmaspheric shoulders and plumes locating toward the moon-side are for the first time simulated with typical scale level of 0.1 RE from the side view of the moon.These simulated results provide an important theoretical basis for the lunar-based EUV camera design.
基金This work was supported by the Fundamental Research Funds for the Central Universities(HUST:2016YXMS028).
文摘In this paper,a CO_(2) laser induced discharge plasma extreme ultraviolet(EUV)source experimental device was established.The optical emission spectroscopy was used to diagnose the characteristics of the plasma,and the evolution of electron temperature and electron density with time was obtained.The influence of discharge voltage on plasma parameters was analyzed and discussed.The EUV radiation characteristics of the plasma were investigated by self-made grazing incidence EUV spectrometer.The EUV radiation intensity and conversion efficiency were discussed.