This paper reviews recent studies on extreme high temperatures in China during summer. The focus is on the variation in extreme heat and tropical nights(i.e. high temperature at night), and the factors of influence....This paper reviews recent studies on extreme high temperatures in China during summer. The focus is on the variation in extreme heat and tropical nights(i.e. high temperature at night), and the factors of influence. Potential research topics in the future are also discussed.展开更多
Extreme heat events have serious effects on human daily life. Accurately capturing the dynamic variance of extreme high-temperature distributions in a timely manner is the basis for analyzing the potential impacts of ...Extreme heat events have serious effects on human daily life. Accurately capturing the dynamic variance of extreme high-temperature distributions in a timely manner is the basis for analyzing the potential impacts of extreme heat, thereby informing risk prevention strategies. This paper demonstrates the potential application of multiple source remote sensing data in mapping and monitoring the extreme heat events that occurred on Aug. 8, 2013 in Jiangsu Province, China. In combination with MODIS products, the thermal sharpening(Ts HARP) method and a binary linear model are compared to downscale the original daytime FengY un 2 F(FY-2 F) land surface temperature(LST) imagery, with a temporal resolution of 60 min, from 5 km to 1 km. Using the meteorological measurement data from Nanjing station as the reference, the research then estimates the instantaneous air temperature by using an iterative computation based on the Surface Energy Balance Algorithm for Land(SEBAL), which is used to analyze the spatio-temporal air temperature variance. The results show that the root mean square error(RMSE) of the LST downscaled from the binary linear model is 1.30℃ compared to the synchronous MODIS LST, and on this basis the estimated air temperature has the RMSE of 1.78℃. The spatial and temporal distribution of air temperature variance at each geographical location from 06:30 to 18:30 can be accurately determined, and indicates that the high temperature gradually increases and expands from the city center. For the spatial distribution, the air temperature and the defined scorching temperature proportion index increase from northern to middle, to southern part of Jiangsu, and are slightly lower in the eastern area near the Yellow Sea. In terms of temporal characteristics, the percentage of area with air temperature above 37℃ in each city increase with time after 10:30 and reach the peak value at 14:30 or 15:30. Then, they decrease gradually, and the rising and falling trends become smaller from the southern cities to the northern regions. Moreover, there is a distinct positive relationship between the percentage of area above 37℃ and the population density. The above results show that the spatio-temporal distributions of heat waves and their influencing factors can be determined by combining multiple sources of remotely sensed image data.展开更多
A destructive extreme heat attacked Northeast Asia(NEA)in the midsummer of 2018,characterized by the average midsummer Tmax(daily maximum air temperature at 2 m)ranking first during the study period.The current study ...A destructive extreme heat attacked Northeast Asia(NEA)in the midsummer of 2018,characterized by the average midsummer Tmax(daily maximum air temperature at 2 m)ranking first during the study period.The current study indicates that the cyclonic anomaly over the western North Pacific(WNP)was an important cause,which presents an anomaly of two standard deviations.The cyclonic anomaly over the WNP was accompanied by anomalous convection,which favored descending and anticyclonic anomalies over NEA through a local meridional cell.The anticyclonic anomaly over NEA corresponds to the northwestward extension of the WNP subtropical high and facilitated the occurrence of extreme heat.The tropical sea surface temperature anomaly(SSTA)presents a La Ni?a decaying episode,but the SSTA over the tropical Pacific and North Indian Ocean was weak in the summer.In contrast,the southeastern tropical Indian Ocean(SETIO)was obviously cool,which was the coolest after detrending.The SETIO cooling triggered a low-level southeasterly anomaly,which turned into a southwesterly after crossing the equator,due to the Coriolis force.The southwesterly anomaly extended eastwards and favored the cyclonic anomaly over the WNP.Meanwhile,the circulation anomalies over the SETIO and WNP were connected via a local meridional cell,with the ascending branch over the WNP.Moreover,the above mechanism also operates for the climate statistics,verifying the robust in?uence of the SETIO SSTA.Considering the consistency of the SETIO SSTA,it could be a potential predictor for the climate over the WNP and NEA.展开更多
Although the urban heat island(UHI) is a well-documented phenomenon, relatively little information in the literature is available about its impact on summer extreme heat event(EHE). As UHI is characterized by increase...Although the urban heat island(UHI) is a well-documented phenomenon, relatively little information in the literature is available about its impact on summer extreme heat event(EHE). As UHI is characterized by increased temperature, it can potentially increase the magnitude and duration of EHEs within cities. Based on daily maximum temperature records from 62 observation stations in Zhejiang province from the period 1971-2011 and satellite-measured nighttime light imagery from the Defense Meteorological Satellite Program(DMSP) Operational Linescan System(OLS) during 1992-2010, we analyzed the long-term change of summer EHEs and its association with the rapid urbanization process. The results could be concluded as follows:(1) Zhejiang has experienced rapid urbanization and dramatic growth in urban areas in the past two decades, especially after 2000.(2) The summer mean maximum temperature and the 95 th percentile of summer daily maximum temperature in most of its stations have increased, with the most significant increase occurring in the highly urbanized areas including the city belt around Hangzhou Bay, Taizhou-Wenzhou and Jinghua-Yiwu city belts.(3) The hot days and hot-day degrees, defined by both daily 95 th percentile and the threshold of 35℃, show that the UHI effect causes additional hot days and heat stress in urban stations compared to rural stations.The results in this study suggest that the UHI effect should be determined and incorporated in preparing high temperature forecasts in cities.展开更多
Northeast China(NEC)witnessed an interdecadal increase in summer extreme heat days(EHDs)around the mid-1990s.The current study reveals that this interdecadal increase only occurs in June and July,while August features...Northeast China(NEC)witnessed an interdecadal increase in summer extreme heat days(EHDs)around the mid-1990s.The current study reveals that this interdecadal increase only occurs in June and July,while August features a unique interdecadal decrease in EHDs around the early 1990s.Plausible reasons for the interdecadal decrease in EHDs in August are further investigated.Results show that the interdecadal decrease in EHDs in August is due to the deceased variability of daily maximum temperature(Tmax).Overall,the variation of the Tmax over NEC in August is modulated by the Eurasian teleconnection pattern,Silk Road pattern,and East AsiaPacific pattern.However,the influence of the Silk Road pattern dramatically weakens after the early 1990s because the meridional wind variability along the westerly jet significantly decreases.The weakened influence of the Silk Road pattern contributes to the decreased Tmax variability over NEC.Meanwhile,the convection over the western North Pacific,which accompanies the East Asia-Pacific pattern,presents a significant decrease in variance after the early 1990s,further decreasing the Tmax variability over NEC.展开更多
Climate change has resulted in a marked increase in heat extremes that carry a severe risk for morbidity and mortality.Kidney is sensitive to heat stimulation,and acute kidney injury(AKI)is the early event.In this stu...Climate change has resulted in a marked increase in heat extremes that carry a severe risk for morbidity and mortality.Kidney is sensitive to heat stimulation,and acute kidney injury(AKI)is the early event.In this study,we investigated the adverse effects of heat extremes and their underlying mechanism.A total of 16 wild-type C57BL/6N mice were randomly divided into groups of control(exposed to 22±0.5°C)and heat(exposed to 39.5±0.5°C until the core body temperature reached the maximum).First,extreme heat exposure induced AKI evidenced by kidney dysfunction and morphological impairment.In addition,heat exposure suppressed expression of molecules for mitochondrial energetics and fatty acid beta-oxidation and disturbed the balance of oxidative stress in the kidney.Moreover,heat exposure enhanced the protein levels in the upstream signaling pathway for NLRP3 inflammasome formation,followed by NLRP3 inflammasome activation and inflammatory cytokine production.These findings demonstrated that acute extreme heat exposure may induce AKI through the NLRP3 inflammasome formation and activation.展开更多
Extreme summer heat can have serious socioeconomic impacts in North China.Here,we explore the decadal variability of the number of extreme heat days in early-to-mid summer(June and July)and a related potential mechani...Extreme summer heat can have serious socioeconomic impacts in North China.Here,we explore the decadal variability of the number of extreme heat days in early-to-mid summer(June and July)and a related potential mechanism consistent with the major seasonal occurrence period of extreme heat events in North China(NCSH).Observational analyses show significant decadal variability in NCSH for 1981–2021,potentially linked to the Indo-Pacific warm pool and Northwest Pacific Ocean dipole(IPOD)in early-to-mid summer.Dynamic diagnostic analysis and the linear baroclinic model(LBM)show that the positive IPOD in early-to-mid summer can excite upward vertical wind anomalies in the South China-East China Sea region,shifting the position of the western Pacific subtropical high(WPSH)to the east or weakening the degree of its control of the South China-East China Sea region,thus generating a positive geopotential height quadrupole(EAWPQ)pattern in the East Asia-Northwest Pacific region.Subsequently,the EAWPQ can cause air compression(expansion)over North China by regulating the tropospheric thickness anomalies in North China,thus increasing(decreasing)NCSH.Finally,an empirical model that incorporates the linear trend can better simulate the decadal NCSH compared to an empirical model based solely on the IPOD index,suggesting that the decadal variability of NCSH may be a combined contribution of the decadal IPOD and external linear forcing.展开更多
BACKGROUND Extreme heat exposure is a growing health problem,and the effects of heat on the gastrointestinal(GI)tract is unknown.This study aimed to assess the incidence of GI symptoms associated with heatstroke and i...BACKGROUND Extreme heat exposure is a growing health problem,and the effects of heat on the gastrointestinal(GI)tract is unknown.This study aimed to assess the incidence of GI symptoms associated with heatstroke and its impact on outcomes.AIM To assess the incidence of GI symptoms associated with heatstroke and its impact on outcomes.METHODS Patients admitted to the intensive care unit(ICU)due to heatstroke were included from 83 centres.Patient history,laboratory results,and clinically relevant outcomes were recorded at ICU admission and daily until up to day 15,ICU discharge,or death.GI symptoms,including nausea/vomiting,diarrhoea,flatulence,and bloody stools,were recorded.The characteristics of patients with heatstroke concomitant with GI symptoms were described.Multivariable regression analyses were performed to determine significant predictors of GI symptoms.RESULTS A total of 713 patients were included in the final analysis,of whom 132(18.5%)patients had at least one GI symptom during their ICU stay,while 26(3.6%)suffered from more than one symptom.Patients with GI symptoms had a significantly higher ICU stay compared with those without.The mortality of patients who had two or more GI symptoms simultaneously was significantly higher than that in those with one GI symptom.Multivariable logistic regression analysis revealed that older patients with a lower GCS score on admission were more likely to experience GI symptoms.CONCLUSION The GI manifestations of heatstroke are common and appear to impact clinically relevant hospitalization outcomes.展开更多
Heat events may be humid or dry.While several indices incorporate humidity,such combined indices obscure identification and exploration of heat events by their different humidity characteristics.The new HadISDH.extrem...Heat events may be humid or dry.While several indices incorporate humidity,such combined indices obscure identification and exploration of heat events by their different humidity characteristics.The new HadISDH.extremes global gridded monitoring product uniquely provides a range of wet and dry bulb temperature extremes indices.Analysis of this new data product demonstrates its value as a tool for quantifying exposure to humid verses dry heat events.It also enables exploration into“stealth heat events”,where humidity is high,perhaps enough to affect productivity and health,while temperature remains moderate.Such events may not typically be identified as“heat events”by temperature-focused heat indices.Over 1973-2022,the peak magnitude of humid extremes(maximum daily wet bulb temperature over a month;T_(w)X)for the global annual mean increased significantly at 0.13±0.04℃(10 yr)^(−1),which is slightly slower than the global annual mean T_(w) increase of 0.22±0.04℃(10 yr)^(−1).The frequency of moderate humid extreme events per year(90th per-centile daily maxima wet bulb temperature exceedance;T_(w)X90p)also increased significantly at 4.61±1.07 d yr^(−1)(10 yr)^(−1).These rates were slower than for temperature extremes,TX and TX90p,which respectively increased significantly at 0.27±0.04℃(10 yr)^(−1) and 5.53±0.72 d yr^(−1)(10 yr)^(−1).Similarly,for the UK/Europe focus region,JJA-mean T_(w)X increased significantly,again at a slower rate than for TX and mean T_(w).HadISDH.extremes shows some evidence of“stealth heat events”occurring where humidity is high but temperature remains more moderate.展开更多
Extreme heat events(EHEs)have a significant impact on the social economy and human health.China is a country with a large population and diverse terrain,and it is necessary to project future extreme heat changes in th...Extreme heat events(EHEs)have a significant impact on the social economy and human health.China is a country with a large population and diverse terrain,and it is necessary to project future extreme heat changes in the sub-regions.This study used a specially designed dataset,the Community Earth System Model(CESM)simulations,namely CESM low-warming,to investigate the EHEs in China under 1.5℃ and 2.0℃ global warming.The results indicate that the regional mean warming over China will exceed the global average,about 1.63℃ and 2.24℃ in 1.5℃ and 2.0℃ warmer futures.Compared to the present-day(1976–2005),the frequency and duration of the EHEs in South China are projected to increase the most among the sub-regions.For example,the frequency of EHEs in South China at 1.5℃ and 2.0℃ warming will exceed 3 and 3.5 times the present-day level.However,when global warming rises from 1.5℃ to 2.0℃,the increased impacts relative to the 1.5℃ warming level will be the lowest in South China(less than 40%),and the highest increased impacts are projected to appear in Northeast China(53%-84%)and Northwest China(53%–107%).The main reason for this situation is that compared with the 1.5℃ scenario,the upper zonal westerly in northern China weakens and the continental high pressure enhances under the 2.0℃ scenario.Therefore,limiting global warming at 1.5℃ instead of 2.0℃ is beneficial for eliminating extreme heat events,especially for Northeast China and Northwest China.展开更多
HadISDH.extremes is an annually updated global gridded monthly monitoring product of wet and dry bulb temperature–based extremes indices,from January 1973 to December 2022.Data quality,including spatial and temporal ...HadISDH.extremes is an annually updated global gridded monthly monitoring product of wet and dry bulb temperature–based extremes indices,from January 1973 to December 2022.Data quality,including spatial and temporal stability,is a key focus.The hourly data are quality controlled.Homogeneity is assessed on monthly means and used to score each gridbox according to its homogeneity rather than to apply adjustments.This enables user-specific screening for temporal stability and avoids errors from inferring adjustments from monthly means for the daily maximum values.For general use,a score(HQ Flag)of 0 to 6 is recommended.A range of indices are presented,aligning with existing standardised indices.Uniquely,provision of both wet and dry bulb indices allows exploration of heat event character—whether it is a“humid and hot”,“dry and hot”or“humid and warm”event.It is designed for analysis of long-term trends in regional features.HadISDH.extremes can be used to study local events,but given the greater vulnerability to errors of maximum compared to mean values,cross-validation with independent information is advised.展开更多
Drying soil has been conducive to a high frequency of extreme high-temperature events over many regions worldwide in recent decades.However,changes in the intraseasonal variability of soil moisture can also influence ...Drying soil has been conducive to a high frequency of extreme high-temperature events over many regions worldwide in recent decades.However,changes in the intraseasonal variability of soil moisture can also influence the likelihood of extremely high temperatures.Although previous investigators have examined the association between extremely high temperatures and large-scale atmospheric circulation variability,the role of land-atmosphere coupling dominated by soil moisture variability in extremely high temperatures,particularly over the Eurasian continent,is not well understood.In this study,on the basis of the Land Surface,Snow,and Soil Moisture Model Intercomparison Project,we found that land-atmosphere feedback amplified the variability of soil moisture in most regions of Eurasia during summer from 1980 to 2014.This amplification of soil moisture variability is closely correlated with more intensive intraseasonal variability of surface air temperature and more frequent occurrences of extreme high-temperature events,particularly in Europe,Siberia,Northeast Asia,and the Indochina Peninsula.This correlation implies that increasing the intraseasonal variability of soil moisture results in a high likelihood of heat extremes during summer in most parts of Eurasia except Asian desert areas.On the intraseasonal timescale,the land-atmosphere coupling increases the variability of surface sensible heat flux and net long-wave radiation heating the atmosphere by intensifying the soil moisture variability,thus amplifying the variability of surface air temperature and enhancing the extreme high-temperature days.This finding demonstrates the importance of changes in intraseasonal soil moisture variability for the increasing likelihood of heat extremes in summer.展开更多
Studies simulating the large-scale afforestation of the African Sahel constantly find warning signals of increased risk of extreme temperatures and heatwaves resulting from changes in albedo and latent heat flow. We r...Studies simulating the large-scale afforestation of the African Sahel constantly find warning signals of increased risk of extreme temperatures and heatwaves resulting from changes in albedo and latent heat flow. We review the afforestation measures underlying three simulation studies, together with a restoration model in which compartments are formed by greenbelts to enable succession of savanna vegetation, protected from hot wind and drought. Savanna-like vegetation (around 20% woody plants) will show bright reflective surface and drying of leaves during dry season rather than constant green color, with very different impact on albedo and temperatures. We derive that the simulated risks of extreme heat and flooding from rain will strongly depend on species, shape and density of the new vegetation. Ecological restoration concepts are expected to mitigate or prevent such restoration related climatic risks. Compact afforestation of the Sahel does not appear to be necessary or feasible. A restoration model based on compartmentalization and the protected succession of diverse, climatically adaptable vegetation could also be used in populated drylands, as a sustainable and temperature balancing solution to desertification.展开更多
Summer weather extremes(e.g.,heavy rainfall,heat waves)in China have been linked to anomalies of summer monsoon circulations.The East Asian subtropical westerly jet(EASWJ),an important component of the summer monsoon ...Summer weather extremes(e.g.,heavy rainfall,heat waves)in China have been linked to anomalies of summer monsoon circulations.The East Asian subtropical westerly jet(EASWJ),an important component of the summer monsoon circulations,was investigated to elucidate the dynamical linkages between its intraseasonal variations and local weather extremes.Based on EOF analysis,the dominant mode of the EASWJ in early summer is characterized by anomalous westerlies centered over North China and anomalous easterlies centered over the south of Japan.This mode is conducive to the occurrence of precipitation extremes over Central and North China and humid heat extremes over most areas of China except Northwest and Northeast China.The centers of the dominant mode of the EASWJ in late summer extend more to the west and north than in early summer,and induce anomalous weather extremes in the corresponding areas.The dominant mode of the EASWJ in late summer is characterized by anomalous westerlies centered over the south of Lake Baikal and anomalous easterlies centered over Central China,which is favorable for the occurrence of precipitation extremes over northern and southern China and humid heat extremes over most areas of China except parts of southern China and northern Xinjiang Province.The variability of the EASWJ can influence precipitation and humid heat extremes by driving anomalous vertical motion and water vapor transport over the corresponding areas in early and late summer.展开更多
In the first step the extremal values of the vibrational specific heat and entropy represented by the Planck oscillators at the low temperatures could be calculated. The positions of the extrema are defined by the dim...In the first step the extremal values of the vibrational specific heat and entropy represented by the Planck oscillators at the low temperatures could be calculated. The positions of the extrema are defined by the dimensionless ratios between the quanta of the vibrational energy and products of the actual temperature multiplied by the Boltzmann constant. It became evident that position of a local maximum obtained for the Planck’s average energy of a vibration mode and position of a local maximum of entropy are the same. In the next step the Haken’s time-dependent perturbation approach to the pair of quantum non-degenerate Schr<span style="white-space:nowrap;">?</span>dinger eigenstates of energy is re-examined. An averaging process done on the time variable leads to a very simple formula for the coefficients entering the perturbation terms.展开更多
Exposure to extreme heat can severely harm crop growth and development,and it is essential to assess such exposure accurately to minimize risks to crop production.However,the actual distribution of crops and its chang...Exposure to extreme heat can severely harm crop growth and development,and it is essential to assess such exposure accurately to minimize risks to crop production.However,the actual distribution of crops and its changes have neither been examined in sufficient detail nor integrated into the assessments of exposure to ensure their accuracy.By examining the distribution of maize at a high resolution through species distribution modeling,we assessed the past and future exposure of maize to temperatures above 37℃worldwide.Such exposure is likely to be widespread and severe,mainly in the subtropics,and may even expand to the mid-latitudes to encompass some major maize-producing areas.Many areas at both high and low latitudes may become exposed for the first time in the next 20 years.By the 2050 s,the total area exposed could increase by up to 185%to 308.18 million ha,of which the area exposed for over 60 days may increase nearly sevenfold.The average length of exposure may increase by 69%to 27 days,and areas optimally suited to maize planting may see the fastest increase by up to 772%.Extreme heat can threaten global maize production severely,and measures to mitigate that threat and to adapt to it are urgently needed.展开更多
Despite recent progress in assessing future population exposure,few studies have focused on the exposure of certain vulnerable groups,such as working people.Working in hot environments can increase the heat-related ri...Despite recent progress in assessing future population exposure,few studies have focused on the exposure of certain vulnerable groups,such as working people.Working in hot environments can increase the heat-related risk to human health and reduce worker productivity,resulting in broad social and economic implications.Based on the daily climatic simulations from the Coupled Model Intercomparison Project phase 6(CMIP6)and the age group-specific population projections,we investigate future changes in working-age population exposure to heat extremes under multiple scenarios at global and continental scales.Projections show little variability in exposure across scenarios by mid-century(2031–2060),whereas significantly greater increases occur under SSP3-7.0 for the late century(2071–2100)compared to lower-end emission scenarios.Global exposure is expected to increase approximately 2-fold,6-fold and 16-fold relative to the historical time(1981–2010)under SSP1-2.6,SSP2-4.5 and SSP3-7.0,respectively.Asia will have the largest absolute exposure increase,while in relative terms,the most affected region is Africa.At the global level,future exposure increases are primarily caused by climate change and the combined effect of climate and working-age population changes.Climate change is the dominant driver in enhancing future continental exposure except in Africa,where the main contributor is the combined effect.展开更多
基金supported by the National Natural Science Foundation of China[grant number 41320104007]
文摘This paper reviews recent studies on extreme high temperatures in China during summer. The focus is on the variation in extreme heat and tropical nights(i.e. high temperature at night), and the factors of influence. Potential research topics in the future are also discussed.
基金Under the auspices of the Natural Science Foundation of China(No.41571418,41401471)Qing Lan Projectthe Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Extreme heat events have serious effects on human daily life. Accurately capturing the dynamic variance of extreme high-temperature distributions in a timely manner is the basis for analyzing the potential impacts of extreme heat, thereby informing risk prevention strategies. This paper demonstrates the potential application of multiple source remote sensing data in mapping and monitoring the extreme heat events that occurred on Aug. 8, 2013 in Jiangsu Province, China. In combination with MODIS products, the thermal sharpening(Ts HARP) method and a binary linear model are compared to downscale the original daytime FengY un 2 F(FY-2 F) land surface temperature(LST) imagery, with a temporal resolution of 60 min, from 5 km to 1 km. Using the meteorological measurement data from Nanjing station as the reference, the research then estimates the instantaneous air temperature by using an iterative computation based on the Surface Energy Balance Algorithm for Land(SEBAL), which is used to analyze the spatio-temporal air temperature variance. The results show that the root mean square error(RMSE) of the LST downscaled from the binary linear model is 1.30℃ compared to the synchronous MODIS LST, and on this basis the estimated air temperature has the RMSE of 1.78℃. The spatial and temporal distribution of air temperature variance at each geographical location from 06:30 to 18:30 can be accurately determined, and indicates that the high temperature gradually increases and expands from the city center. For the spatial distribution, the air temperature and the defined scorching temperature proportion index increase from northern to middle, to southern part of Jiangsu, and are slightly lower in the eastern area near the Yellow Sea. In terms of temporal characteristics, the percentage of area with air temperature above 37℃ in each city increase with time after 10:30 and reach the peak value at 14:30 or 15:30. Then, they decrease gradually, and the rising and falling trends become smaller from the southern cities to the northern regions. Moreover, there is a distinct positive relationship between the percentage of area above 37℃ and the population density. The above results show that the spatio-temporal distributions of heat waves and their influencing factors can be determined by combining multiple sources of remotely sensed image data.
基金supported by the National Key R&D Program of China [grant number 2016YFA0600601]the National Natural Science Foundation of China [grant numbers41605027,41530530,and 41721004]the Fundamental Research Funds for the Central Universities
文摘A destructive extreme heat attacked Northeast Asia(NEA)in the midsummer of 2018,characterized by the average midsummer Tmax(daily maximum air temperature at 2 m)ranking first during the study period.The current study indicates that the cyclonic anomaly over the western North Pacific(WNP)was an important cause,which presents an anomaly of two standard deviations.The cyclonic anomaly over the WNP was accompanied by anomalous convection,which favored descending and anticyclonic anomalies over NEA through a local meridional cell.The anticyclonic anomaly over NEA corresponds to the northwestward extension of the WNP subtropical high and facilitated the occurrence of extreme heat.The tropical sea surface temperature anomaly(SSTA)presents a La Ni?a decaying episode,but the SSTA over the tropical Pacific and North Indian Ocean was weak in the summer.In contrast,the southeastern tropical Indian Ocean(SETIO)was obviously cool,which was the coolest after detrending.The SETIO cooling triggered a low-level southeasterly anomaly,which turned into a southwesterly after crossing the equator,due to the Coriolis force.The southwesterly anomaly extended eastwards and favored the cyclonic anomaly over the WNP.Meanwhile,the circulation anomalies over the SETIO and WNP were connected via a local meridional cell,with the ascending branch over the WNP.Moreover,the above mechanism also operates for the climate statistics,verifying the robust in?uence of the SETIO SSTA.Considering the consistency of the SETIO SSTA,it could be a potential predictor for the climate over the WNP and NEA.
基金National Science Foundation of China(41371068)"Strategic Priority Research Program(B)" of the Chinese Academy of Sciences(XDB05020403)
文摘Although the urban heat island(UHI) is a well-documented phenomenon, relatively little information in the literature is available about its impact on summer extreme heat event(EHE). As UHI is characterized by increased temperature, it can potentially increase the magnitude and duration of EHEs within cities. Based on daily maximum temperature records from 62 observation stations in Zhejiang province from the period 1971-2011 and satellite-measured nighttime light imagery from the Defense Meteorological Satellite Program(DMSP) Operational Linescan System(OLS) during 1992-2010, we analyzed the long-term change of summer EHEs and its association with the rapid urbanization process. The results could be concluded as follows:(1) Zhejiang has experienced rapid urbanization and dramatic growth in urban areas in the past two decades, especially after 2000.(2) The summer mean maximum temperature and the 95 th percentile of summer daily maximum temperature in most of its stations have increased, with the most significant increase occurring in the highly urbanized areas including the city belt around Hangzhou Bay, Taizhou-Wenzhou and Jinghua-Yiwu city belts.(3) The hot days and hot-day degrees, defined by both daily 95 th percentile and the threshold of 35℃, show that the UHI effect causes additional hot days and heat stress in urban stations compared to rural stations.The results in this study suggest that the UHI effect should be determined and incorporated in preparing high temperature forecasts in cities.
基金supported by the National Key R&D Program of China[grant number 2016YFA0600601]the Guangdong Basic and Applied Basic Research Foundation[grant number 2020A1515011572]the National Natural Science Foundation of China[grant number 41605027]。
文摘Northeast China(NEC)witnessed an interdecadal increase in summer extreme heat days(EHDs)around the mid-1990s.The current study reveals that this interdecadal increase only occurs in June and July,while August features a unique interdecadal decrease in EHDs around the early 1990s.Plausible reasons for the interdecadal decrease in EHDs in August are further investigated.Results show that the interdecadal decrease in EHDs in August is due to the deceased variability of daily maximum temperature(Tmax).Overall,the variation of the Tmax over NEC in August is modulated by the Eurasian teleconnection pattern,Silk Road pattern,and East AsiaPacific pattern.However,the influence of the Silk Road pattern dramatically weakens after the early 1990s because the meridional wind variability along the westerly jet significantly decreases.The weakened influence of the Silk Road pattern contributes to the decreased Tmax variability over NEC.Meanwhile,the convection over the western North Pacific,which accompanies the East Asia-Pacific pattern,presents a significant decrease in variance after the early 1990s,further decreasing the Tmax variability over NEC.
基金National Natural Science Foundation of China(grant number 82273590,81973001,82173480,82004143)Science and Technology Innovation Program for College Students of Zhejiang Province(Xinmiao Talent Program)(grant number 2022R410A043).
文摘Climate change has resulted in a marked increase in heat extremes that carry a severe risk for morbidity and mortality.Kidney is sensitive to heat stimulation,and acute kidney injury(AKI)is the early event.In this study,we investigated the adverse effects of heat extremes and their underlying mechanism.A total of 16 wild-type C57BL/6N mice were randomly divided into groups of control(exposed to 22±0.5°C)and heat(exposed to 39.5±0.5°C until the core body temperature reached the maximum).First,extreme heat exposure induced AKI evidenced by kidney dysfunction and morphological impairment.In addition,heat exposure suppressed expression of molecules for mitochondrial energetics and fatty acid beta-oxidation and disturbed the balance of oxidative stress in the kidney.Moreover,heat exposure enhanced the protein levels in the upstream signaling pathway for NLRP3 inflammasome formation,followed by NLRP3 inflammasome activation and inflammatory cytokine production.These findings demonstrated that acute extreme heat exposure may induce AKI through the NLRP3 inflammasome formation and activation.
基金This work was jointly supported by the National Natural Science Foundation of China(Grant Nos.42130610,42075040,and 42175078)the Joint Research Project for Meteorological Capacity Improvement(Grant No.22NLTSQ002)+1 种基金Guangdong Major Project of Basic and Applied Basic Research(2020B0301030004)the Innovation and development project of China Meteorological Administration(Grant No.CXFZ2022J030).
文摘Extreme summer heat can have serious socioeconomic impacts in North China.Here,we explore the decadal variability of the number of extreme heat days in early-to-mid summer(June and July)and a related potential mechanism consistent with the major seasonal occurrence period of extreme heat events in North China(NCSH).Observational analyses show significant decadal variability in NCSH for 1981–2021,potentially linked to the Indo-Pacific warm pool and Northwest Pacific Ocean dipole(IPOD)in early-to-mid summer.Dynamic diagnostic analysis and the linear baroclinic model(LBM)show that the positive IPOD in early-to-mid summer can excite upward vertical wind anomalies in the South China-East China Sea region,shifting the position of the western Pacific subtropical high(WPSH)to the east or weakening the degree of its control of the South China-East China Sea region,thus generating a positive geopotential height quadrupole(EAWPQ)pattern in the East Asia-Northwest Pacific region.Subsequently,the EAWPQ can cause air compression(expansion)over North China by regulating the tropospheric thickness anomalies in North China,thus increasing(decreasing)NCSH.Finally,an empirical model that incorporates the linear trend can better simulate the decadal NCSH compared to an empirical model based solely on the IPOD index,suggesting that the decadal variability of NCSH may be a combined contribution of the decadal IPOD and external linear forcing.
基金Supported by National Key R&D Program of China,No.2022YFC25045001.3.5 Project for Disciplines of Excellence,West China Hospital,Sichuan University,No.ZYGD23012.
文摘BACKGROUND Extreme heat exposure is a growing health problem,and the effects of heat on the gastrointestinal(GI)tract is unknown.This study aimed to assess the incidence of GI symptoms associated with heatstroke and its impact on outcomes.AIM To assess the incidence of GI symptoms associated with heatstroke and its impact on outcomes.METHODS Patients admitted to the intensive care unit(ICU)due to heatstroke were included from 83 centres.Patient history,laboratory results,and clinically relevant outcomes were recorded at ICU admission and daily until up to day 15,ICU discharge,or death.GI symptoms,including nausea/vomiting,diarrhoea,flatulence,and bloody stools,were recorded.The characteristics of patients with heatstroke concomitant with GI symptoms were described.Multivariable regression analyses were performed to determine significant predictors of GI symptoms.RESULTS A total of 713 patients were included in the final analysis,of whom 132(18.5%)patients had at least one GI symptom during their ICU stay,while 26(3.6%)suffered from more than one symptom.Patients with GI symptoms had a significantly higher ICU stay compared with those without.The mortality of patients who had two or more GI symptoms simultaneously was significantly higher than that in those with one GI symptom.Multivariable logistic regression analysis revealed that older patients with a lower GCS score on admission were more likely to experience GI symptoms.CONCLUSION The GI manifestations of heatstroke are common and appear to impact clinically relevant hospitalization outcomes.
基金supported by the UK–China Research & Innovation Partnership Fund through the Met Office Climate Science for Service Partnership (CSSP) China as part of the Newton Fund
文摘Heat events may be humid or dry.While several indices incorporate humidity,such combined indices obscure identification and exploration of heat events by their different humidity characteristics.The new HadISDH.extremes global gridded monitoring product uniquely provides a range of wet and dry bulb temperature extremes indices.Analysis of this new data product demonstrates its value as a tool for quantifying exposure to humid verses dry heat events.It also enables exploration into“stealth heat events”,where humidity is high,perhaps enough to affect productivity and health,while temperature remains moderate.Such events may not typically be identified as“heat events”by temperature-focused heat indices.Over 1973-2022,the peak magnitude of humid extremes(maximum daily wet bulb temperature over a month;T_(w)X)for the global annual mean increased significantly at 0.13±0.04℃(10 yr)^(−1),which is slightly slower than the global annual mean T_(w) increase of 0.22±0.04℃(10 yr)^(−1).The frequency of moderate humid extreme events per year(90th per-centile daily maxima wet bulb temperature exceedance;T_(w)X90p)also increased significantly at 4.61±1.07 d yr^(−1)(10 yr)^(−1).These rates were slower than for temperature extremes,TX and TX90p,which respectively increased significantly at 0.27±0.04℃(10 yr)^(−1) and 5.53±0.72 d yr^(−1)(10 yr)^(−1).Similarly,for the UK/Europe focus region,JJA-mean T_(w)X increased significantly,again at a slower rate than for TX and mean T_(w).HadISDH.extremes shows some evidence of“stealth heat events”occurring where humidity is high but temperature remains more moderate.
基金Program of China(2017YFA0603804)the National Natural Science Foundation of China(41430528 and 41831174).
文摘Extreme heat events(EHEs)have a significant impact on the social economy and human health.China is a country with a large population and diverse terrain,and it is necessary to project future extreme heat changes in the sub-regions.This study used a specially designed dataset,the Community Earth System Model(CESM)simulations,namely CESM low-warming,to investigate the EHEs in China under 1.5℃ and 2.0℃ global warming.The results indicate that the regional mean warming over China will exceed the global average,about 1.63℃ and 2.24℃ in 1.5℃ and 2.0℃ warmer futures.Compared to the present-day(1976–2005),the frequency and duration of the EHEs in South China are projected to increase the most among the sub-regions.For example,the frequency of EHEs in South China at 1.5℃ and 2.0℃ warming will exceed 3 and 3.5 times the present-day level.However,when global warming rises from 1.5℃ to 2.0℃,the increased impacts relative to the 1.5℃ warming level will be the lowest in South China(less than 40%),and the highest increased impacts are projected to appear in Northeast China(53%-84%)and Northwest China(53%–107%).The main reason for this situation is that compared with the 1.5℃ scenario,the upper zonal westerly in northern China weakens and the continental high pressure enhances under the 2.0℃ scenario.Therefore,limiting global warming at 1.5℃ instead of 2.0℃ is beneficial for eliminating extreme heat events,especially for Northeast China and Northwest China.
基金supported by the UK–China Research & Innovation Partnership Fund through the Met Office Climate Science for Service Partnership (CSSP) China as part of the Newton Fund
文摘HadISDH.extremes is an annually updated global gridded monthly monitoring product of wet and dry bulb temperature–based extremes indices,from January 1973 to December 2022.Data quality,including spatial and temporal stability,is a key focus.The hourly data are quality controlled.Homogeneity is assessed on monthly means and used to score each gridbox according to its homogeneity rather than to apply adjustments.This enables user-specific screening for temporal stability and avoids errors from inferring adjustments from monthly means for the daily maximum values.For general use,a score(HQ Flag)of 0 to 6 is recommended.A range of indices are presented,aligning with existing standardised indices.Uniquely,provision of both wet and dry bulb indices allows exploration of heat event character—whether it is a“humid and hot”,“dry and hot”or“humid and warm”event.It is designed for analysis of long-term trends in regional features.HadISDH.extremes can be used to study local events,but given the greater vulnerability to errors of maximum compared to mean values,cross-validation with independent information is advised.
基金supported by the National Key Research and Development Program of China (2022YFF0801703)the National Natural Science Foundation of China (42175053 and 41822503).
文摘Drying soil has been conducive to a high frequency of extreme high-temperature events over many regions worldwide in recent decades.However,changes in the intraseasonal variability of soil moisture can also influence the likelihood of extremely high temperatures.Although previous investigators have examined the association between extremely high temperatures and large-scale atmospheric circulation variability,the role of land-atmosphere coupling dominated by soil moisture variability in extremely high temperatures,particularly over the Eurasian continent,is not well understood.In this study,on the basis of the Land Surface,Snow,and Soil Moisture Model Intercomparison Project,we found that land-atmosphere feedback amplified the variability of soil moisture in most regions of Eurasia during summer from 1980 to 2014.This amplification of soil moisture variability is closely correlated with more intensive intraseasonal variability of surface air temperature and more frequent occurrences of extreme high-temperature events,particularly in Europe,Siberia,Northeast Asia,and the Indochina Peninsula.This correlation implies that increasing the intraseasonal variability of soil moisture results in a high likelihood of heat extremes during summer in most parts of Eurasia except Asian desert areas.On the intraseasonal timescale,the land-atmosphere coupling increases the variability of surface sensible heat flux and net long-wave radiation heating the atmosphere by intensifying the soil moisture variability,thus amplifying the variability of surface air temperature and enhancing the extreme high-temperature days.This finding demonstrates the importance of changes in intraseasonal soil moisture variability for the increasing likelihood of heat extremes in summer.
文摘Studies simulating the large-scale afforestation of the African Sahel constantly find warning signals of increased risk of extreme temperatures and heatwaves resulting from changes in albedo and latent heat flow. We review the afforestation measures underlying three simulation studies, together with a restoration model in which compartments are formed by greenbelts to enable succession of savanna vegetation, protected from hot wind and drought. Savanna-like vegetation (around 20% woody plants) will show bright reflective surface and drying of leaves during dry season rather than constant green color, with very different impact on albedo and temperatures. We derive that the simulated risks of extreme heat and flooding from rain will strongly depend on species, shape and density of the new vegetation. Ecological restoration concepts are expected to mitigate or prevent such restoration related climatic risks. Compact afforestation of the Sahel does not appear to be necessary or feasible. A restoration model based on compartmentalization and the protected succession of diverse, climatically adaptable vegetation could also be used in populated drylands, as a sustainable and temperature balancing solution to desertification.
基金supported by the National Natural Science Foundation of China[grant numbers 42175066,41875087,42030601,and 42105017]the Shanghai Municipal Natural Science Fund[grant number 20ZR1407400]the Shanghai Pujiang Program[grant number 20PJ1401600]。
文摘Summer weather extremes(e.g.,heavy rainfall,heat waves)in China have been linked to anomalies of summer monsoon circulations.The East Asian subtropical westerly jet(EASWJ),an important component of the summer monsoon circulations,was investigated to elucidate the dynamical linkages between its intraseasonal variations and local weather extremes.Based on EOF analysis,the dominant mode of the EASWJ in early summer is characterized by anomalous westerlies centered over North China and anomalous easterlies centered over the south of Japan.This mode is conducive to the occurrence of precipitation extremes over Central and North China and humid heat extremes over most areas of China except Northwest and Northeast China.The centers of the dominant mode of the EASWJ in late summer extend more to the west and north than in early summer,and induce anomalous weather extremes in the corresponding areas.The dominant mode of the EASWJ in late summer is characterized by anomalous westerlies centered over the south of Lake Baikal and anomalous easterlies centered over Central China,which is favorable for the occurrence of precipitation extremes over northern and southern China and humid heat extremes over most areas of China except parts of southern China and northern Xinjiang Province.The variability of the EASWJ can influence precipitation and humid heat extremes by driving anomalous vertical motion and water vapor transport over the corresponding areas in early and late summer.
文摘In the first step the extremal values of the vibrational specific heat and entropy represented by the Planck oscillators at the low temperatures could be calculated. The positions of the extrema are defined by the dimensionless ratios between the quanta of the vibrational energy and products of the actual temperature multiplied by the Boltzmann constant. It became evident that position of a local maximum obtained for the Planck’s average energy of a vibration mode and position of a local maximum of entropy are the same. In the next step the Haken’s time-dependent perturbation approach to the pair of quantum non-degenerate Schr<span style="white-space:nowrap;">?</span>dinger eigenstates of energy is re-examined. An averaging process done on the time variable leads to a very simple formula for the coefficients entering the perturbation terms.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFA0602402)。
文摘Exposure to extreme heat can severely harm crop growth and development,and it is essential to assess such exposure accurately to minimize risks to crop production.However,the actual distribution of crops and its changes have neither been examined in sufficient detail nor integrated into the assessments of exposure to ensure their accuracy.By examining the distribution of maize at a high resolution through species distribution modeling,we assessed the past and future exposure of maize to temperatures above 37℃worldwide.Such exposure is likely to be widespread and severe,mainly in the subtropics,and may even expand to the mid-latitudes to encompass some major maize-producing areas.Many areas at both high and low latitudes may become exposed for the first time in the next 20 years.By the 2050 s,the total area exposed could increase by up to 185%to 308.18 million ha,of which the area exposed for over 60 days may increase nearly sevenfold.The average length of exposure may increase by 69%to 27 days,and areas optimally suited to maize planting may see the fastest increase by up to 772%.Extreme heat can threaten global maize production severely,and measures to mitigate that threat and to adapt to it are urgently needed.
基金Research Grants from National Institute of Natural Hazards,Ministry of Emergency Management of China,No.ZDJ2021-15China Postdoctoral Science Foundation,No.2021M702771。
文摘Despite recent progress in assessing future population exposure,few studies have focused on the exposure of certain vulnerable groups,such as working people.Working in hot environments can increase the heat-related risk to human health and reduce worker productivity,resulting in broad social and economic implications.Based on the daily climatic simulations from the Coupled Model Intercomparison Project phase 6(CMIP6)and the age group-specific population projections,we investigate future changes in working-age population exposure to heat extremes under multiple scenarios at global and continental scales.Projections show little variability in exposure across scenarios by mid-century(2031–2060),whereas significantly greater increases occur under SSP3-7.0 for the late century(2071–2100)compared to lower-end emission scenarios.Global exposure is expected to increase approximately 2-fold,6-fold and 16-fold relative to the historical time(1981–2010)under SSP1-2.6,SSP2-4.5 and SSP3-7.0,respectively.Asia will have the largest absolute exposure increase,while in relative terms,the most affected region is Africa.At the global level,future exposure increases are primarily caused by climate change and the combined effect of climate and working-age population changes.Climate change is the dominant driver in enhancing future continental exposure except in Africa,where the main contributor is the combined effect.