期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Analysis on characteristics of extreme precipitation indices and atmospheric circulation in Northern Shanxi
1
作者 Xia Cai Yan Song +3 位作者 Lin Cai Xin Su GuiHua Liang YanMing Xu 《Research in Cold and Arid Regions》 CSCD 2024年第2期84-97,共14页
This article utilizes daily precipitation data from 28 national meteorological stations in northern Shanxi Province spanning from 1972 to 2020,and the US NCEP/NCAR monthly average reanalysis and ERA5 monthly average r... This article utilizes daily precipitation data from 28 national meteorological stations in northern Shanxi Province spanning from 1972 to 2020,and the US NCEP/NCAR monthly average reanalysis and ERA5 monthly average reanalysis data.The study employs techniques such as empirical orthogonal function(EOF)decomposition,MannKendall mutation and other methods to investigate the spatiotemporal distribution of extreme precipitation index in northern Shanxi and their correlation with atmospheric circulation.The research results show that:the absolute index,relative index,intensity index and sustained dry period index(CDD)in the continuous index appear from southwest to northeast.The spatial distribution characteristics of the central region decrease,while the continuous wet period(CWD)decreases from the central to the east and west.The three indices Rx1day,Rx5day,and CWD mutated in 1978,1975,and 1983 respectively,and other extreme precipitation indices all appeared in a sudden change from a low-value period to a high-value period occurred around 2010.In the high-value years of the summer extreme precipitation index,there is a significant negative anomaly in the height field in the mid-high latitude regions of Eurasia.Northern Shanxi is controlled by a broad low-pressure trough in the Lake Baikal area.Water vapor transported via the east,west,and south routes converges in the northern Shanxi region and encounters cold air from the north.There is a strong upward motion anomaly at 500 hPa in the troposphere,and the dynamic conditions of upper-level divergence and lower-level convergence lead to more summer extreme precipitation in the northern Shanxi region.Conversely,in the low-value years of the summer extreme precipitation index,northern Shanxi is affected by a strong high-pressure ridge north of Lake Baikal.There is a downward motion anomaly at 500 hPa,and the northern Shanxi region lacks water vapor.The cold and warm air cannot converge,and both the water vapor conditions and dynamic conditions are poor,which is not conducive to the production of extreme precipitation in northern Shanxi. 展开更多
关键词 Northern Shanxi extreme precipitation indices Spatio-temporal distribution and evolution MUTATIONS Atmospheric circulation anomaly
下载PDF
Projection of precipitation extremes over South Asia from CMIP6 GCMs 被引量:1
2
作者 Adnan ABBAS Asher S BHATTI +5 位作者 Safi ULLAH Waheed ULLAH Muhammad WASEEM ZHAO Chengyi DOU Xin Gohar ALI 《Journal of Arid Land》 SCIE CSCD 2023年第3期274-296,共23页
Extreme precipitation events are one of the most dangerous hydrometeorological disasters,often resulting in significant human and socio-economic losses worldwide.It is therefore important to use current global climate... Extreme precipitation events are one of the most dangerous hydrometeorological disasters,often resulting in significant human and socio-economic losses worldwide.It is therefore important to use current global climate models to project future changes in precipitation extremes.The present study aims to assess the future changes in precipitation extremes over South Asia from the Coupled Model Intercomparison Project Phase 6(CMIP6)Global Climate Models(GCMs).The results were derived using the modified Mann-Kendall test,Sen's slope estimator,student's t-test,and probability density function approach.Eight extreme precipitation indices were assessed,including wet days(RR1mm),heavy precipitation days(RR10mm),very heavy precipitation days(RR20mm),severe precipitation days(RR50mm),consecutive wet days(CWD),consecutive dry days(CDD),maximum 5-day precipitation amount(RX5day),and simple daily intensity index(SDII).The future changes were estimated in two time periods for the 21^(st) century(i.e.,near future(NF;2021-2060)and far future(FF;2061-2100))under two Shared Socioeconomic Pathway(SSP)scenarios(SSP2-4.5 and SSP5-8.5).The results suggest increases in the frequency and intensity of extreme precipitation indices under the SSP5-8.5 scenario towards the end of the 21^(st) century(2061-2100).Moreover,from the results of multimodel ensemble means(MMEMs),extreme precipitation indices of RR1mm,RR10mm,RR20mm,CWD,and SDII demonstrate remarkable increases in the FF period under the SSP5-8.5 scenario.The spatial distribution of extreme precipitation indices shows intensification over the eastern part of South Asia compared to the western part.The probability density function of extreme precipitation indices suggests a frequent(intense)occurrence of precipitation extremes in the FF period under the SSP5-8.5 scenario,with values up to 35.00 d for RR1mm and 25.00-35.00 d for CWD.The potential impacts of heavy precipitation can pose serious challenges to the study area regarding flooding,soil erosion,water resource management,food security,and agriculture development. 展开更多
关键词 precipitation extremes extreme precipitation indices climate change Coupled Model Intercomparison Project 6(CMIP6) Global Climate Model(GCM) South Asia
下载PDF
The Spatial-Temporal Change of Extreme Precipitation in the Southwest Region of Zhejiang Province during 1953-2022
3
作者 Wenhao Yang Shujie Yuan Hongxia Shi 《Journal of Geoscience and Environment Protection》 2023年第11期91-102,共12页
Based on the daily precipitation from 17 meteorological stations in the southwest of Zhejiang from 1953 to 2022, 11 extreme precipitation indices were calculated, and the temporal-spatial characteristic of extreme pre... Based on the daily precipitation from 17 meteorological stations in the southwest of Zhejiang from 1953 to 2022, 11 extreme precipitation indices were calculated, and the temporal-spatial characteristic of extreme precipitation were analyzed. The results indicate that 1) Except for the number of consecutive dry days (CDD), all the other extreme precipitation indices had low values in the northeast of the study area and high value around Liuchun Lake;2) CDD had a decreasing trend in most part of study area, while the other indices were on the rise, especially at Suichang (SC) and Tonglu (TL) stations, the change was significant (p 0.05);3) The annual variation showed that CDD declined with the trend of 0.83 d/10a, however, all the other indices increased, especially after 2000, the increase was more obvious. In general, the extreme precipitation mount, the extreme precipitation days showed an increasing trend, drought was less likely to happen, and the possibility of heavy precipitation is less, however, at some individual station such as SC, heavy precipitation and storm is much more likely to occur. 展开更多
关键词 Southwest of Zhejiang Province extreme precipitation indices Temporal-Spatial Characteristic
下载PDF
Trends in Extreme Indices and Seasonal Analysis of Precipitation and Temperature in the Northwest Region of Rio Grande do Sul,Brazil
4
作者 Tirzah Moreira de Melo Jose Antonio S.Louzada Olavo Correa Pedrollo 《American Journal of Climate Change》 2015年第3期187-202,共16页
Probably the most important environmental challenge of this century is to adapt to climate change and develop strategies to minimize its effects. This study aims to conduct an investigation to detect changes in temper... Probably the most important environmental challenge of this century is to adapt to climate change and develop strategies to minimize its effects. This study aims to conduct an investigation to detect changes in temperature and precipitation in the northwest region of Rio Grande do Sul with the use of different general and regional circulation models (GCMs and RCMs, respectively). Seven distinct locations in the region were considered, for which there were ten different climate projections. Additionally, we investigated the frequency and intensity of extreme rainfall events using different extreme precipitation indices. These projections indicate an increase of mean annual temperature of almost 3&deg;C till the end of the century, as well as an increase in annual precipitation. The seasonal analysis has demonstrated that the largest increases of temperature are projected for winter and early spring and do not coincide with the summer months of the main crop cultivation (soybean) in the region. Additionally, it is expected high amounts of rain during these same months. In general, trends in extreme precipitation indices were detected for the RCM projections in most of locations. It can also be concluded that it is possible that the spatial distribution of the impacts of climate change on agriculture will not be uniform. 展开更多
关键词 Climate Change Climate Models extreme precipitation indices AGRICULTURE
下载PDF
Spatiotemporal Trend Analysis of Precipitation Extremes in Ho Chi Minh City, Vietnam During 1980–2017 被引量:2
5
作者 Nguyen Trong Quan Dao Nguyen Khoi +2 位作者 Nguyen Xuan Hoan Nguyen Ky Phung Thanh Duc Dang 《International Journal of Disaster Risk Science》 SCIE CSCD 2021年第1期131-146,共16页
In this study,the spatiotemporal variability of trends in extreme precipitation events in Ho Chi Minh City during the period 1980–2017 was analyzed based on several core extreme precipitation indices(Rx1 day,Rx5 day,... In this study,the spatiotemporal variability of trends in extreme precipitation events in Ho Chi Minh City during the period 1980–2017 was analyzed based on several core extreme precipitation indices(Rx1 day,Rx5 day,CDD,CWD,R20 mm,R25 mm,R95 p,and SDII).The nonparametric Mann–Kendall and Sen’s slope methods were used to compute the statistical strength,stability,and magnitude of trends in annual rainfall,as well as the extreme precipitation indices.We found that 64%of the stations had statistically significant upward trends in yearly rainfall,with high magnitudes frequently observed in the northern and southern regions of the city.For the extreme precipitation indices,only SDII and R25 mm showed dominantly significant trends.Additionally,there were increasing trends in the frequency and duration at the southern and central regions of the city during the study period.Furthermore,El Ni?o-Southern Oscillation and Pacific Decadal Oscillation positively correlated with the duration and negatively correlated with the intensity and frequency of extreme precipitation.Thus,water management plans should be adjusted appropriately to reduce the severe impacts of precipitation extremes on communities and ecosystems. 展开更多
关键词 Spatiotemporal trend extreme precipitation extreme precipitation indices Ho Chi Minh City
原文传递
Projected hydrologic regime changes in the Poyang Lake Basin due to climate change 被引量:1
6
作者 Le Wang Shenglian Guo +2 位作者 Xingjun Hong Dedi Liu Lihua Xiong 《Frontiers of Earth Science》 SCIE CAS CSCD 2017年第1期95-113,共19页
Poyang Lake, the largest freshwater lake in China, and its surrounding sub-basins have suffered frequent floods and droughts in recent decades. To better understand and quantitatively assess hydrological impacts of cl... Poyang Lake, the largest freshwater lake in China, and its surrounding sub-basins have suffered frequent floods and droughts in recent decades. To better understand and quantitatively assess hydrological impacts of climate change in the region, this study adopted the Statistical Downscaling Model (SDSM) to downseale the outputs of a Global Climate Model (GCM) under three scenarios (RCP2.6, RCP4.5 and RCP8.5) as recommended by the fifth phase of the Coupled Model Inter-comparison Project (CMIP5) during future periods (2010-2099) in the Poyang Lake Basin. A semi-distributed two-parameter monthly water balance model was also used to simulate and predict projected changes of runoff in the Ganjiang sub-basin. Results indicate that: 1) SDSM can simulate monthly mean precipitation reasonably well, while a bias correction procedure should be applied to downscaled extreme precipitation indices (EPI) before being employed to simulate future precipitation; 2) for annual mean precipitation, a mixed pattern of positive or negative changes are detected in the entire basin, with a slightly higher or lower trend in the 2020s and 2050s, with a consistent increase in the 2080s; 3) all six EPI show a general increase under RCP4.5 and RCP8.5 scenarios, while a mixed pattern of positive and negative changes is detected for most indices under the RCP2.6 scenario; and 4) the future runoff in the Ganjiang sub-basin shows an overall decreasing trend for all periods but the 2080s under the RCP8.5 scenario when runoff is more sensitive to changes in precipitation than evaporation. 展开更多
关键词 climate change hydrological regimes statistical downscaling extreme precipitation indices Poyang Lake Basin
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部