Understanding the potential drought characteristics under climate change is essential to reduce vulnerability and establish adaptation strategies, especially in the Huang-Huai-Hai Plain (3H Plain), which is a major ...Understanding the potential drought characteristics under climate change is essential to reduce vulnerability and establish adaptation strategies, especially in the Huang-Huai-Hai Plain (3H Plain), which is a major grain production area in China. In this paper, we investigated the variations in drought characteristics (drought event frequency, duration, severity, and intensity) for the past 50 years (1961-2010) and under future scenarios (2010-2099), based on the observed meteorological data and the Representative Concentration Pathway (RCP) 8.5 scenario, respectively. First, we compared the applicability of three climatic drought indices: the standardized precipitation index (SPI), the standardized precipitation evapotranspiration index based on the Penman-Monteith equation (SPEI-PM) and the same index based on the Thornthwaite equation (SPEI-TH) to correlate the recorded agricultural drought areas. Then, we analyzed the drought characteristics using 'run theory' for both historical and the future RCP 8.5 scenario based on the best performing index. Correlation analyses between drought indices and agricultural drought areas showed that SPEI-PM performed better than SPI and SPEI-TH in the 3H Plain. Based on the results of SPEI-PM, drought risks including duration, severity and intensity during 1961-2010 showed an decreasing trend. However, under the RCP 8.5 scenario, drought is expected to rise in frequency, duration, severity, and intensity from 2010-2099, although drought components during the 2010-2039 are predicted to be milder compared with historical conditions. This study highlights that the estimations for atmospheric evaporative demand would create differences in the prediction of long-term drought trends by different drought indices. The results of this study can help inform researchers and local policy makers to establish drought management strategies.展开更多
Studying the significant impacts on vegetation of drought due to global warming is crucial in order to understand its dynamics and interrelationships with temperature,rainfall,and normalized difference vegetation inde...Studying the significant impacts on vegetation of drought due to global warming is crucial in order to understand its dynamics and interrelationships with temperature,rainfall,and normalized difference vegetation index(NDVI).These factors are linked to excesses drought frequency and severity on the regional scale,and their effect on vegetation remains an important topic for climate change study.East Asia is very sensitive and susceptible to climate change.In this study,we examined the effect of drought on the seasonal variations of vegetation in relation to climate variability and determined which growing seasons are most vulnerable to drought risk;and then explored the spatio-temporal evolution of the trend in drought changes in East Asia from 1982 to 2019.The data were studied using a series of several drought indexes,and the data were then classified using a heat map,box and whisker plot analysis,and principal component analysis.The various drought indexes from January to August improved rapidly,except for vegetation health index(VHI)and temperature condition index(TCI).While these indices were constant in September,they increased again in October,but in December,they showed a descending trend.The seasonal and monthly analysis of the drought indexes and the heat map confirmed that the East Asian region suffered from extreme droughts in 1984,1993,2007,and 2012among the study years.The distribution of the trend in drought changes indicated that more severe drought occurred in the northwestern region than in the southeastern area of East Asia.The drought tendency slope was used to describe the changes in drought events during 1982–2019 in the study region.The correlations among monthly precipitation anomaly percentage(NAP),NDVI,TCI,vegetation condition index(VCI),temperature vegetation drought index(TVDI),and VHI indicated considerably positive correlations,while considerably negative correlations were found among the three pairs of NDVI and VHI,TVDI and VHI,and NDVI and TCI.This ecological and climatic mechanism provides a good basis for the assessment of vegetation and drought-change variations within the East Asian region.This study is a step forward in monitoring the seasonal variation of vegetation and variations in drought dynamics within the East Asian region,which will serve and contribute to the better management of vegetation,disaster risk,and drought in the East Asian region.展开更多
[Objective] The research aimed to analyze temporal and spatial variation characteristics of temperature in Shangqiu City during 1961-2010.[Method] Based on temperature data in eight meteorological stations of Shangqiu...[Objective] The research aimed to analyze temporal and spatial variation characteristics of temperature in Shangqiu City during 1961-2010.[Method] Based on temperature data in eight meteorological stations of Shangqiu during 1961-2010,by using trend analysis method,the temporal and spatial evolution characteristics of annual average temperature,annual average maximum and minimum temperatures,annual extreme maximum and minimum temperatures,daily range of annual average temperature in Shangqiu City were analyzed.M-K method was used to determine mutation year of temperature.[Result] The annual average temperature,annual average minimum temperature and annual extreme minimum temperature respectively rose at 0.122,0.255 and 0.488 ℃/10 a.The variation trend of annual average maximum temperature wasn’t obvious.The daily range of annual average temperature and annual extreme maximum temperature respectively declined at-0.217 and-0.292 ℃/10 a.Seen from spatial distribution,the increase amplitudes of annual average temperature,annual average minimum temperature and annual extreme minimum temperature were all large in the east and small in the west.The decrease amplitude of daily range of annual average temperature was large in the east and small in the west.The decrease amplitude of annual extreme maximum temperature was large in the west and small in the east.The annual average maximum temperature had trends of increase and decrease.The annual average temperature,annual average minimum temperature and daily range of annual average temperature all mutated in 1997.The annual average maximum temperature didn’t have obvious mutation point.The annual extreme maximum temperature mutated in 1973.The annual extreme minimum temperature respectively mutated in 1989 and 1999.[Conclusion] The research played important guidance significances in adjustment of agricultural production structure,regional climate planning,reasonably using climate resource and replying climate change in Shangqiu City.展开更多
Based on the daily precipitation data of 545 meteorological stations in China from 1961 to 2016, the spatial-temporal variation characteristics of rainstorm rainfall and rainy days in different months of China were di...Based on the daily precipitation data of 545 meteorological stations in China from 1961 to 2016, the spatial-temporal variation characteristics of rainstorm rainfall and rainy days in different months of China were diagnosed from three aspects: climatic characteristics, variation trend and interannual variation. The results showed that:(1) Rainstorm rainfall and rainy days in different months of China from 1961 to 2016 had similar spatial characteristics in corresponding months. From January to July, the high-value areas of rainstorm rainfall and rainy days gradually expanded from southeast coast to northwest inland, but mainly distributed in the east area of Hu Huanyong Line. From August to December, it shrank from northwest to southeast coastal areas. Rainstorm rainfall and rainy days were less distributed in different months in the west area of Hu Huanyong Line;(2) From 1961 to 2016, the spatial-temporal variation characteristics of rainstorm rainfall in different months in China were basically consistent with that of rainy days. May to August was the most significant month for the variation trend of rainstorm rainfall and rainy days in China. It mainly distributed in the southeast monsoon area, and was mainly increasing trend. The trend of rainstorm rainfall and rainy days in northwest China changed slightly in different months;(3) The interannual variability of rainstorm rainfall in different months in China from 1961 to 2016 was similar to that of rainy days. The fluctuation characteristics from April to October were larger in the northern region. The southern region fluctuated greatly from November to December in January to March. With the development of the month, the high-value areas with large daily fluctuations of rainstorm rainfall and rainy days gradually expanded from southeast to northwest, northeast and southwest, and the fluctuations in southeast tended to decrease, then shrank from northwest, northeast and southwest to southeast, with the increasing fluctuations in southeast. The study has certain reference significance for flood control and disaster reduction and water resources planning and utilization.展开更多
With the global climate change, the extreme drought was increasing. From 2009 autumn to 2010 spring, a hundred-year drought happened in Yunnan province, which caused great local economic losses and widespread attentio...With the global climate change, the extreme drought was increasing. From 2009 autumn to 2010 spring, a hundred-year drought happened in Yunnan province, which caused great local economic losses and widespread attention. So many researches about Yunnan drought were studied. The climatic characteristics of the drought over Yunnan are studied by analyzing the spatial and temporal distribution of some meteorological factors such as precipitation, temperature and sunlight, etc. Some researchers studied the formation mechanism of the drought events in Yunnan. In this paper, by investigating lots of related documents, we had a summarization and commentary about the recent study achievements of Yunnan drought and tried to offer reference to the study on the Yunnan drought in the future.展开更多
Based on data of hail days at 2 481 stations during 1961-2016,the temporal and spatial distribution characteristics and periodic variation of gale days in China and seven geographical regions were analyzed by using a ...Based on data of hail days at 2 481 stations during 1961-2016,the temporal and spatial distribution characteristics and periodic variation of gale days in China and seven geographical regions were analyzed by using a variety of statistical methods. The results showed that: in time,the gale days in China and the seven geographical areas all showed a decreasing trend from 1961 to 2016. In the Tibet( Southeast China and Southwest China) region,the annual number of single-station gale days was the most( least),but the decrease ratio was the least( most). In the significance oscillation period,it was 14 years in the whole country,60 years in Northeastern China,Northern China and east part of Northwestern China,7,14 and 60 years in the west of Northwestern China,Southwestern China and Southeastern China,7 and 60 years in the Tibet region. The mutation of gale days generally occurred in 1991,1993,1989,1997,1986,1997,1992 and 1984 in the whole country,Northeastern China,Northern China,east part of Northwestern China,west part of Northwestern China,Tibet,Southwestern China and Southeastern China,but only the east of Northwestern China and Tibet region passed 0. 05 of significance test. In space,the annual average gale days showed the pattern of southeast low and northwest high in China from 1961 to 2016. The annual average gale days were more abundant in the central and western Tibet,the southern Qinghai,eastern Xinjiang,western Sichuan,northern Inner Mongolia and northern Gansu. These regions were dominated by positive anomaly in the 1970 s and the 1980 s,but negative in other decades. Annual gale days in most regions of China showed a decreasing trend during 1961-2016,and fluctuation presented high in east region and low in west region beside " Hu Huanyong line".展开更多
Based on the historical documents and measured data from the active-layer temperature (ALT) at A, B and C locations (4 670, 4 720 and 4 770 m a.s.l.) on Baishui Glacier No. 1, southeastern Tibetan Plateau, this pa...Based on the historical documents and measured data from the active-layer temperature (ALT) at A, B and C locations (4 670, 4 720 and 4 770 m a.s.l.) on Baishui Glacier No. 1, southeastern Tibetan Plateau, this paper analyzed spatial-temporal characteristics of ALT and its relationship with air temperature, and revealed the response of the active layer ice temperature towards climate change in the monitoring period. The results showed that the influence of air temperature on the active-layer ice temperature had a hysteresis characteristic on the upper of ablation zone and the lag period in- creased gradually with the altitude elevating. The decrease amplitude of ALT in the accumulation pe- riod was far below its increase magnitude in the ablation period. At the same time, the mean glacier ice temperatures at 10 m depth (T10) in A, B and C profile were obviously higher than most of glaciers previously studied. Measured data also showed that the mean ALT increased by 0.24℃ in 0.5-8.5 m depth of the C profile during 28 years from July 11, 1982 to July 10, 2009.展开更多
The characteristics of drought in Xinjiang Uygur Autonomous Region(Xinjiang),China have changed due to changes in the spatiotemporal patterns of temperature and precipitation,however,the effects of temperature and pre...The characteristics of drought in Xinjiang Uygur Autonomous Region(Xinjiang),China have changed due to changes in the spatiotemporal patterns of temperature and precipitation,however,the effects of temperature and precipitation—the two most important factors influencing drought—have not yet been thoroughly explored in this region.In this study,we first calculated the standard precipitation evapotranspiration index(SPEI)in Xinjiang from 1980 to 2020 based on the monthly precipitation and monthly average temperature.Then the spatiotemporal characteristics of temperature,precipitation,and drought in Xinjiang from 1980 to 2020 were analyzed using the Theil-Sen median trend analysis method and Mann-Kendall test.A series of SPEI-based scenario-setting experiments by combining the observed and detrended climatic factors were utilized to quantify the effects of individual climatic factor(i.e.,temperature and precipitation).The results revealed that both temperature and precipitation had experienced increasing trends at most meteorological stations in Xinjiang from 1980 to 2020,especially the spring temperature and winter precipitation.Due to the influence of temperature,trends of intensifying drought have been observed at spring,summer,autumn,and annual scales.In addition,the drought trends in southern Xinjiang were more notable than those in northern Xinjiang.From 1980 to 2020,temperature trends exacerbated drought trends,but precipitation trends alleviated drought trends in Xinjiang.Most meteorological stations in Xinjiang exhibited temperature-dominated drought trend except in winter;in winter,most stations exhibited precipitation-dominated wetting trend.The findings of this study highlight the importance of the impact of temperature on drought in Xinjiang and deepen the understanding of the factors influencing drought.展开更多
The Greater Khingan Mountains (Daxinganling) are China's important ecological protective screen and also the region most sensitive to climate changes. To gain an in-depth understanding and reveal the climate change...The Greater Khingan Mountains (Daxinganling) are China's important ecological protective screen and also the region most sensitive to climate changes. To gain an in-depth understanding and reveal the climate change characteristic in this high-latitude, cold and data-insufficient region is of great importance to maintaining ecological safety and corre- sponding to global climate changes. In this article, the annual average temperature, precipi- tation and sunshine duration series were firstly constructed using tree-ring data and the me- teorological observation data. Then, using the climate tendency rate method, moving-t-testing method, Yamamoto method and wavelet analysis method, we have investigated the climate changes in the region during the past 307 years. Results indicate that, since 1707, the annual average temperature increased significantly, the precipitation increased slightly and the sun- shine duration decreased, with the tendency rates of 0.06~C/10a, 0.79 mm/10a and -5.15 h/10a, respectively (P〈~0.01). Since the 21 st century, the period with the greatest increase of the annual average temperature (also with the greatest increase of precipitation) corresponds to the period with greatest decrease of sunshine duration. Three sudden changes of the an- nual average temperature and sunshine duration occurred in this period while two sudden changes of precipitation occurred. The strong sudden-change years of precipitation and sunshine duration are basically consistent with the sudden-change years of annual average temperature, suggesting that in the mid-1860s, the climatic sudden change or transition really existed in this region. In the time domain, the climatic series of this region exhibit obvious local variation characteristics. The annual average temperature and sunshine duration exhibit the periodic variations of 25 years while the precipitation exhibits a periodic variation of 20 years. Based on these periodic characteristics, one can infer that in the period from 2013 to 2030, the temperature will be at a high-temperature stage, the precipitation will be at an abundant-precipitation stage and the sunshine duration will be at an less-sunshine stage. In terms of spatial distribution, the leading distribution type of the annual average temperature in this region shows integrity, i.e:, it is easily higher or lower in the whole region; and the second distribution type is more (or less) in the southwest parts and less (or more) in the northeast parts. Precipitation and sunshine duration exhibit complex spatial distribution and include four spatial distribution types. The present study can provide scientific basis for the security in- vestigation of homeland, ecological and water resources as well as economic development programming in China's northern borders.展开更多
使用淮河流域1981年至2020年的149个气象站点的气温和相对湿度数据,分析了流域暖季极端高温干旱复合事件(Compound Drought and Heat Events,CDHEs)的时空演变特征,并通过趋势分析和相关分析法探讨了CDHEs与气候和植被的关系。结果表明:...使用淮河流域1981年至2020年的149个气象站点的气温和相对湿度数据,分析了流域暖季极端高温干旱复合事件(Compound Drought and Heat Events,CDHEs)的时空演变特征,并通过趋势分析和相关分析法探讨了CDHEs与气候和植被的关系。结果表明:(1)CDHEs的发生日数在年代际尺度上呈现明显的增加趋势,并且范围扩大,频发区逐渐向淮河流域中西部移动;(2)在年际尺度上,CDHEs随时间序列呈显著的波动上升趋势,空间分布上以西北部为中心向四周递减。连续CDHEs事件呈年际变化,最大2至4天的连续事件存在波动,2019年达到高峰,并且在流域内零散或成片出现;(3)在月际尺度上,CDHEs的发生日数在6月最多,其次是5月、7月、9月和8月。淮河流域入汛前的旱情和入汛后的旱涝急转都容易导致CDHEs发生,而且随着月际变化向南移动;(4)CDHEs对水热条件和大气环流具有特别的敏感性。在850hPa反气旋和500hPa显著高压异常的控制下,高温、低湿、高蒸发和降水少的气候背景有利于淮河地区CDHEs的形成,尤其是在淮河中西部地区。因此,CDHEs的发生与气候变化密切相关;(5)CDHEs与植被生长也存在显著关系。CDHEs与GPP呈显著的负相关,而与NDVI呈显著的正相关,显著地区的土地类型以耕地和城乡、工矿、居民用地为主。GPP和NDVI的不同步可能是因为多种因素的非线性相互作用,而不仅仅是单一因素的影响。此外,对于GPP和NDVI来说,土壤含水量至关重要。总之,本文对淮河流域CDHEs的时空分布特征进行了深入研究,并探讨了其与气候和植被的关系。研究结果可以为该地区的气象灾害防御和生态环境保护提供科学依据和参考。展开更多
基金supported by the National Basic Research Program of China (973 Program,2012CB955904)the National Key Technologies R&D Program of China during the 12th Five-year Plan period (2012BAD09B01)the National Science Foundation for Young Scientists of China (41401510)
文摘Understanding the potential drought characteristics under climate change is essential to reduce vulnerability and establish adaptation strategies, especially in the Huang-Huai-Hai Plain (3H Plain), which is a major grain production area in China. In this paper, we investigated the variations in drought characteristics (drought event frequency, duration, severity, and intensity) for the past 50 years (1961-2010) and under future scenarios (2010-2099), based on the observed meteorological data and the Representative Concentration Pathway (RCP) 8.5 scenario, respectively. First, we compared the applicability of three climatic drought indices: the standardized precipitation index (SPI), the standardized precipitation evapotranspiration index based on the Penman-Monteith equation (SPEI-PM) and the same index based on the Thornthwaite equation (SPEI-TH) to correlate the recorded agricultural drought areas. Then, we analyzed the drought characteristics using 'run theory' for both historical and the future RCP 8.5 scenario based on the best performing index. Correlation analyses between drought indices and agricultural drought areas showed that SPEI-PM performed better than SPI and SPEI-TH in the 3H Plain. Based on the results of SPEI-PM, drought risks including duration, severity and intensity during 1961-2010 showed an decreasing trend. However, under the RCP 8.5 scenario, drought is expected to rise in frequency, duration, severity, and intensity from 2010-2099, although drought components during the 2010-2039 are predicted to be milder compared with historical conditions. This study highlights that the estimations for atmospheric evaporative demand would create differences in the prediction of long-term drought trends by different drought indices. The results of this study can help inform researchers and local policy makers to establish drought management strategies.
基金the Basic Research Project of Zhejiang Normal University,China(ZC304022952)the China Postdoctoral Science Foundation Funding(2018M642614)the Natural Science Foundation Youth Proj ect of S h andong Provi nce,C hina(ZR2020QF281)。
文摘Studying the significant impacts on vegetation of drought due to global warming is crucial in order to understand its dynamics and interrelationships with temperature,rainfall,and normalized difference vegetation index(NDVI).These factors are linked to excesses drought frequency and severity on the regional scale,and their effect on vegetation remains an important topic for climate change study.East Asia is very sensitive and susceptible to climate change.In this study,we examined the effect of drought on the seasonal variations of vegetation in relation to climate variability and determined which growing seasons are most vulnerable to drought risk;and then explored the spatio-temporal evolution of the trend in drought changes in East Asia from 1982 to 2019.The data were studied using a series of several drought indexes,and the data were then classified using a heat map,box and whisker plot analysis,and principal component analysis.The various drought indexes from January to August improved rapidly,except for vegetation health index(VHI)and temperature condition index(TCI).While these indices were constant in September,they increased again in October,but in December,they showed a descending trend.The seasonal and monthly analysis of the drought indexes and the heat map confirmed that the East Asian region suffered from extreme droughts in 1984,1993,2007,and 2012among the study years.The distribution of the trend in drought changes indicated that more severe drought occurred in the northwestern region than in the southeastern area of East Asia.The drought tendency slope was used to describe the changes in drought events during 1982–2019 in the study region.The correlations among monthly precipitation anomaly percentage(NAP),NDVI,TCI,vegetation condition index(VCI),temperature vegetation drought index(TVDI),and VHI indicated considerably positive correlations,while considerably negative correlations were found among the three pairs of NDVI and VHI,TVDI and VHI,and NDVI and TCI.This ecological and climatic mechanism provides a good basis for the assessment of vegetation and drought-change variations within the East Asian region.This study is a step forward in monitoring the seasonal variation of vegetation and variations in drought dynamics within the East Asian region,which will serve and contribute to the better management of vegetation,disaster risk,and drought in the East Asian region.
文摘[Objective] The research aimed to analyze temporal and spatial variation characteristics of temperature in Shangqiu City during 1961-2010.[Method] Based on temperature data in eight meteorological stations of Shangqiu during 1961-2010,by using trend analysis method,the temporal and spatial evolution characteristics of annual average temperature,annual average maximum and minimum temperatures,annual extreme maximum and minimum temperatures,daily range of annual average temperature in Shangqiu City were analyzed.M-K method was used to determine mutation year of temperature.[Result] The annual average temperature,annual average minimum temperature and annual extreme minimum temperature respectively rose at 0.122,0.255 and 0.488 ℃/10 a.The variation trend of annual average maximum temperature wasn’t obvious.The daily range of annual average temperature and annual extreme maximum temperature respectively declined at-0.217 and-0.292 ℃/10 a.Seen from spatial distribution,the increase amplitudes of annual average temperature,annual average minimum temperature and annual extreme minimum temperature were all large in the east and small in the west.The decrease amplitude of daily range of annual average temperature was large in the east and small in the west.The decrease amplitude of annual extreme maximum temperature was large in the west and small in the east.The annual average maximum temperature had trends of increase and decrease.The annual average temperature,annual average minimum temperature and daily range of annual average temperature all mutated in 1997.The annual average maximum temperature didn’t have obvious mutation point.The annual extreme maximum temperature mutated in 1973.The annual extreme minimum temperature respectively mutated in 1989 and 1999.[Conclusion] The research played important guidance significances in adjustment of agricultural production structure,regional climate planning,reasonably using climate resource and replying climate change in Shangqiu City.
基金Sponsored by National Natural Science Foundation of China(41801064 71790611)+2 种基金China Postdoctoral Science Foundation(2019T120114 2019M650756)Central Asia Atmospheric Science Research Fund(CAAS201804)
文摘Based on the daily precipitation data of 545 meteorological stations in China from 1961 to 2016, the spatial-temporal variation characteristics of rainstorm rainfall and rainy days in different months of China were diagnosed from three aspects: climatic characteristics, variation trend and interannual variation. The results showed that:(1) Rainstorm rainfall and rainy days in different months of China from 1961 to 2016 had similar spatial characteristics in corresponding months. From January to July, the high-value areas of rainstorm rainfall and rainy days gradually expanded from southeast coast to northwest inland, but mainly distributed in the east area of Hu Huanyong Line. From August to December, it shrank from northwest to southeast coastal areas. Rainstorm rainfall and rainy days were less distributed in different months in the west area of Hu Huanyong Line;(2) From 1961 to 2016, the spatial-temporal variation characteristics of rainstorm rainfall in different months in China were basically consistent with that of rainy days. May to August was the most significant month for the variation trend of rainstorm rainfall and rainy days in China. It mainly distributed in the southeast monsoon area, and was mainly increasing trend. The trend of rainstorm rainfall and rainy days in northwest China changed slightly in different months;(3) The interannual variability of rainstorm rainfall in different months in China from 1961 to 2016 was similar to that of rainy days. The fluctuation characteristics from April to October were larger in the northern region. The southern region fluctuated greatly from November to December in January to March. With the development of the month, the high-value areas with large daily fluctuations of rainstorm rainfall and rainy days gradually expanded from southeast to northwest, northeast and southwest, and the fluctuations in southeast tended to decrease, then shrank from northwest, northeast and southwest to southeast, with the increasing fluctuations in southeast. The study has certain reference significance for flood control and disaster reduction and water resources planning and utilization.
文摘With the global climate change, the extreme drought was increasing. From 2009 autumn to 2010 spring, a hundred-year drought happened in Yunnan province, which caused great local economic losses and widespread attention. So many researches about Yunnan drought were studied. The climatic characteristics of the drought over Yunnan are studied by analyzing the spatial and temporal distribution of some meteorological factors such as precipitation, temperature and sunlight, etc. Some researchers studied the formation mechanism of the drought events in Yunnan. In this paper, by investigating lots of related documents, we had a summarization and commentary about the recent study achievements of Yunnan drought and tried to offer reference to the study on the Yunnan drought in the future.
基金Supported by the National Natural Science Foundation of China(41801064,71790611)the Climate Change Project of China Meteorological Administration(CCSF201843,CCSF201844)the Central Asia Atmospheric Science Research Fund(CAAS201804)
文摘Based on data of hail days at 2 481 stations during 1961-2016,the temporal and spatial distribution characteristics and periodic variation of gale days in China and seven geographical regions were analyzed by using a variety of statistical methods. The results showed that: in time,the gale days in China and the seven geographical areas all showed a decreasing trend from 1961 to 2016. In the Tibet( Southeast China and Southwest China) region,the annual number of single-station gale days was the most( least),but the decrease ratio was the least( most). In the significance oscillation period,it was 14 years in the whole country,60 years in Northeastern China,Northern China and east part of Northwestern China,7,14 and 60 years in the west of Northwestern China,Southwestern China and Southeastern China,7 and 60 years in the Tibet region. The mutation of gale days generally occurred in 1991,1993,1989,1997,1986,1997,1992 and 1984 in the whole country,Northeastern China,Northern China,east part of Northwestern China,west part of Northwestern China,Tibet,Southwestern China and Southeastern China,but only the east of Northwestern China and Tibet region passed 0. 05 of significance test. In space,the annual average gale days showed the pattern of southeast low and northwest high in China from 1961 to 2016. The annual average gale days were more abundant in the central and western Tibet,the southern Qinghai,eastern Xinjiang,western Sichuan,northern Inner Mongolia and northern Gansu. These regions were dominated by positive anomaly in the 1970 s and the 1980 s,but negative in other decades. Annual gale days in most regions of China showed a decreasing trend during 1961-2016,and fluctuation presented high in east region and low in west region beside " Hu Huanyong line".
基金funded by the National Basic Research Program of China (No. 2013CBA01808)the National Natural Science Foundation of China (No. 41273010)the China Postdoctoral Science Foundation (No. 2013M530436)
文摘Based on the historical documents and measured data from the active-layer temperature (ALT) at A, B and C locations (4 670, 4 720 and 4 770 m a.s.l.) on Baishui Glacier No. 1, southeastern Tibetan Plateau, this paper analyzed spatial-temporal characteristics of ALT and its relationship with air temperature, and revealed the response of the active layer ice temperature towards climate change in the monitoring period. The results showed that the influence of air temperature on the active-layer ice temperature had a hysteresis characteristic on the upper of ablation zone and the lag period in- creased gradually with the altitude elevating. The decrease amplitude of ALT in the accumulation pe- riod was far below its increase magnitude in the ablation period. At the same time, the mean glacier ice temperatures at 10 m depth (T10) in A, B and C profile were obviously higher than most of glaciers previously studied. Measured data also showed that the mean ALT increased by 0.24℃ in 0.5-8.5 m depth of the C profile during 28 years from July 11, 1982 to July 10, 2009.
文摘The characteristics of drought in Xinjiang Uygur Autonomous Region(Xinjiang),China have changed due to changes in the spatiotemporal patterns of temperature and precipitation,however,the effects of temperature and precipitation—the two most important factors influencing drought—have not yet been thoroughly explored in this region.In this study,we first calculated the standard precipitation evapotranspiration index(SPEI)in Xinjiang from 1980 to 2020 based on the monthly precipitation and monthly average temperature.Then the spatiotemporal characteristics of temperature,precipitation,and drought in Xinjiang from 1980 to 2020 were analyzed using the Theil-Sen median trend analysis method and Mann-Kendall test.A series of SPEI-based scenario-setting experiments by combining the observed and detrended climatic factors were utilized to quantify the effects of individual climatic factor(i.e.,temperature and precipitation).The results revealed that both temperature and precipitation had experienced increasing trends at most meteorological stations in Xinjiang from 1980 to 2020,especially the spring temperature and winter precipitation.Due to the influence of temperature,trends of intensifying drought have been observed at spring,summer,autumn,and annual scales.In addition,the drought trends in southern Xinjiang were more notable than those in northern Xinjiang.From 1980 to 2020,temperature trends exacerbated drought trends,but precipitation trends alleviated drought trends in Xinjiang.Most meteorological stations in Xinjiang exhibited temperature-dominated drought trend except in winter;in winter,most stations exhibited precipitation-dominated wetting trend.The findings of this study highlight the importance of the impact of temperature on drought in Xinjiang and deepen the understanding of the factors influencing drought.
基金National Natural Science Foundation of China,No.41165005,No.40865005
文摘The Greater Khingan Mountains (Daxinganling) are China's important ecological protective screen and also the region most sensitive to climate changes. To gain an in-depth understanding and reveal the climate change characteristic in this high-latitude, cold and data-insufficient region is of great importance to maintaining ecological safety and corre- sponding to global climate changes. In this article, the annual average temperature, precipi- tation and sunshine duration series were firstly constructed using tree-ring data and the me- teorological observation data. Then, using the climate tendency rate method, moving-t-testing method, Yamamoto method and wavelet analysis method, we have investigated the climate changes in the region during the past 307 years. Results indicate that, since 1707, the annual average temperature increased significantly, the precipitation increased slightly and the sun- shine duration decreased, with the tendency rates of 0.06~C/10a, 0.79 mm/10a and -5.15 h/10a, respectively (P〈~0.01). Since the 21 st century, the period with the greatest increase of the annual average temperature (also with the greatest increase of precipitation) corresponds to the period with greatest decrease of sunshine duration. Three sudden changes of the an- nual average temperature and sunshine duration occurred in this period while two sudden changes of precipitation occurred. The strong sudden-change years of precipitation and sunshine duration are basically consistent with the sudden-change years of annual average temperature, suggesting that in the mid-1860s, the climatic sudden change or transition really existed in this region. In the time domain, the climatic series of this region exhibit obvious local variation characteristics. The annual average temperature and sunshine duration exhibit the periodic variations of 25 years while the precipitation exhibits a periodic variation of 20 years. Based on these periodic characteristics, one can infer that in the period from 2013 to 2030, the temperature will be at a high-temperature stage, the precipitation will be at an abundant-precipitation stage and the sunshine duration will be at an less-sunshine stage. In terms of spatial distribution, the leading distribution type of the annual average temperature in this region shows integrity, i.e:, it is easily higher or lower in the whole region; and the second distribution type is more (or less) in the southwest parts and less (or more) in the northeast parts. Precipitation and sunshine duration exhibit complex spatial distribution and include four spatial distribution types. The present study can provide scientific basis for the security in- vestigation of homeland, ecological and water resources as well as economic development programming in China's northern borders.
文摘使用淮河流域1981年至2020年的149个气象站点的气温和相对湿度数据,分析了流域暖季极端高温干旱复合事件(Compound Drought and Heat Events,CDHEs)的时空演变特征,并通过趋势分析和相关分析法探讨了CDHEs与气候和植被的关系。结果表明:(1)CDHEs的发生日数在年代际尺度上呈现明显的增加趋势,并且范围扩大,频发区逐渐向淮河流域中西部移动;(2)在年际尺度上,CDHEs随时间序列呈显著的波动上升趋势,空间分布上以西北部为中心向四周递减。连续CDHEs事件呈年际变化,最大2至4天的连续事件存在波动,2019年达到高峰,并且在流域内零散或成片出现;(3)在月际尺度上,CDHEs的发生日数在6月最多,其次是5月、7月、9月和8月。淮河流域入汛前的旱情和入汛后的旱涝急转都容易导致CDHEs发生,而且随着月际变化向南移动;(4)CDHEs对水热条件和大气环流具有特别的敏感性。在850hPa反气旋和500hPa显著高压异常的控制下,高温、低湿、高蒸发和降水少的气候背景有利于淮河地区CDHEs的形成,尤其是在淮河中西部地区。因此,CDHEs的发生与气候变化密切相关;(5)CDHEs与植被生长也存在显著关系。CDHEs与GPP呈显著的负相关,而与NDVI呈显著的正相关,显著地区的土地类型以耕地和城乡、工矿、居民用地为主。GPP和NDVI的不同步可能是因为多种因素的非线性相互作用,而不仅仅是单一因素的影响。此外,对于GPP和NDVI来说,土壤含水量至关重要。总之,本文对淮河流域CDHEs的时空分布特征进行了深入研究,并探讨了其与气候和植被的关系。研究结果可以为该地区的气象灾害防御和生态环境保护提供科学依据和参考。