The impact effect of boulder within debris flow is the key factor contributing to peak impact as well as to the failure of debris flow control work. So accurate measuring and calculating the impact force of debris flo...The impact effect of boulder within debris flow is the key factor contributing to peak impact as well as to the failure of debris flow control work. So accurate measuring and calculating the impact force of debris flow can ensure the engineering design strength. However, limited to the existing laboratory conditions and piezoelectric sensor performance, it is impossible, based on the conventional measurements, to devise a computing method for expressing a reliable boulder impact force. This paper has therefore designed a new measurement device according to the method of integrating Fiber Bragg grating(FBG) and reinforced concrete composite beam(RCB) for measuring the impact force of debris flows, i.e. mounting FBG on the axially stressed steel bar in the composite beam at regular intervals to monitor the steel strain. RCB plays the role of contacting debris flow and protecting FBG sensors. Taking this new device as the experimental object, drop testing is designed for simulating and reflecting the boulder impact force. In a series of impacting tests, the relationship between the peak dynamic strain value of the steel bar and the impact force is analyzed, and based on which, an inversion model that uses the steel bar strain as the independent variable is established for calculating the boulder impact force.The experimental results show that this new inversion model can determine the impact force value and its acting position with a system error of 18.1%, which can provide an experimental foundation for measuring the impact force of boulders within the debris flow by the new FBG-based device.展开更多
Rehabilitation devices help to recover the physical abilities of patients. This study aims to develop a portable rehabilitation device that is safe to use when?patients are holding it by hands. In a previous study, to...Rehabilitation devices help to recover the physical abilities of patients. This study aims to develop a portable rehabilitation device that is safe to use when?patients are holding it by hands. In a previous study, to realize a home rehabilitation device, a flexible spherical actuator that can provide motion to patients was developed. In this study, to measure the relative position between both handling stages, a 3D coordinate measuring device using three wire-type linear potentiometers and an embedded controller was proposed and tested. In this paper, the spherical actuator with built-in 3D coordinate measuring device is described. The measuring method and experimental results obtained are also presented. The tracking position control of the actuator using the measuring device was carried out. As a result, the position of the handling stages can be successfully controlled using the feedback signal from the tested?measuring device.展开更多
The clearance of the hemisphere dynamic pressure motor is small and difficult to measure, the measurement method of micro clearance is studied. The shortcomings of the original measurement method are analyzed, and a c...The clearance of the hemisphere dynamic pressure motor is small and difficult to measure, the measurement method of micro clearance is studied. The shortcomings of the original measurement method are analyzed, and a clearance measuring device for the hemisphere dynamic pressure motor is designed, which improves the measurement efficiency and stability.展开更多
The paper mainly introduces concrete design of the hardware and program steps of Infrared Telecontrol Code Measuring Device based on AT89C51RC. In addition, it also gives out the design circuit of infrared transmitter...The paper mainly introduces concrete design of the hardware and program steps of Infrared Telecontrol Code Measuring Device based on AT89C51RC. In addition, it also gives out the design circuit of infrared transmitter and infrared receiver and the typical design circuit of the system, and the application method as well. Through particularly researching on sending and receiving technology of in- frared, a precise method decoding the signal send by infrared controller and its circuit is designed.展开更多
Copper Zinc Antimony Sulfide(CZAS)is derived from Copper Antimony Sulfide(CAS),a famatinite class of compound.In the current paper,the first step for using Copper,Zinc,Antimony and Sulfide as materials in manufacturin...Copper Zinc Antimony Sulfide(CZAS)is derived from Copper Antimony Sulfide(CAS),a famatinite class of compound.In the current paper,the first step for using Copper,Zinc,Antimony and Sulfide as materials in manufacturing synchrotronic biosensor-namely increasing the sensitivity of biosensor through creating Copper Zinc Antimony Sulfide,CZAS(Cu1.18Zn0.40Sb1.90S7.2)semiconductor and using it instead of Copper Tin Sulfide,CTS(Cu2SnS3)for tracking,monitoring,imaging,measuring,diagnosing and detecting cancer cells,is evaluated.Further,optimization of tris(2,2'-bipyridyl)ruthenium(II)(Ru(bpy)32+)concentrations and Copper Zinc Antimony Sulfide,CZAS(Cu1.18Zn0.40Sb1.90S7.2)semiconductor as two main and effective materials in the intensity of synchrotron for tracking,monitoring,imaging,measuring,diagnosing and detecting cancer cells are considered so that the highest sensitivity obtains.In this regard,various concentrations of two materials were prepared and photon emission was investigated in the absence of cancer cells.On the other hand,ccancer diagnosis requires the analysis of images and attributes as well as collecting many clinical and mammography variables.In diagnosis of cancer,it is important to determine whether a tumor is benign or malignant.The information about cancer risk prediction along with the type of tumor are crucial for patients and effective medical decision making.An ideal diagnostic system could effectively distinguish between benign and malignant cells;however,such a system has not been created yet.In this study,a model is developed to improve the prediction probability of cancer.It is necessary to have such a prediction model as the survival probability of cancer is high when patients are diagnosed at early stages.展开更多
Time delay and integration (TDI) charge coupled device (CCD) noise sets a fundamental limit on image sensor performance, especially under low illumination in remote sensing applications. After introducing the comp...Time delay and integration (TDI) charge coupled device (CCD) noise sets a fundamental limit on image sensor performance, especially under low illumination in remote sensing applications. After introducing the complete sources of CCD noise, we study the effects of TDI operation mode on noise, and the relationship between different types of noise and number of the TDI stage. Then we propose a new technique to identify and measure sources of TDI CCD noise employing mathematical statistics theory, where theoretical analysis shows that noise estimated formulation converges well. Finally, we establish a testing platform to carry out experiments, and a standard TDI CCD is calibrated by using the proposed method. The experimental results show that the noise analysis and measurement methods presented in this paper are useful for modeling TDI CCDs.展开更多
We have reviewed a set of recently published studies that compared the anterior chamber depth(ACD) and/or white-to-white(WTW) distance obtained by means of different measuring devices.Since some of those studies r...We have reviewed a set of recently published studies that compared the anterior chamber depth(ACD) and/or white-to-white(WTW) distance obtained by means of different measuring devices.Since some of those studies reached contradictory conclusions regarding device interchangeability,this review was carried out in attempting to clarify which clinical devices can or cannot be considered as interchangeable in clinical practice to measure ACD and/or WTW distance,among these devices:A-scan,ultrasound biomicroscopy,Orbscan and Orbscan Ⅱ(Bausch&Lomb Surgical Inc.,San Dimas,California,USA),Pentacam and Pentacam HR(Oculus,Wetzlar,Germany),Galilei(Ziemer,Switzerland),Visante optical coherence tomography(Visante OCT,Carl Zeiss Meditec Inc.,Dublin,California,USA),lOLMaster(Carl Zeiss Meditec,Jena,Germany),and Lenstar LS 900/Biograph(Haag-Streit AG,Koeniz,Switzerland/Alcon Laboratories Inc.,Ft Worth,Texas,USA).展开更多
In this paper, we propose a measurement-device-independent quantum-key-distribution(MDI-QKD) protocol using orbital angular momentum(OAM) in free space links, named the OAM-MDI-QKD protocol. In the proposed protoc...In this paper, we propose a measurement-device-independent quantum-key-distribution(MDI-QKD) protocol using orbital angular momentum(OAM) in free space links, named the OAM-MDI-QKD protocol. In the proposed protocol,the OAM states of photons, instead of polarization states, are used as the information carriers to avoid the reference frame alignment, the decoy-state is adopted to overcome the security loophole caused by the weak coherent pulse source, and the high efficient OAM-sorter is adopted as the measurement tool for Charlie to obtain the output OAM state. Here, Charlie may be an untrusted third party. The results show that the authorized users, Alice and Bob, could distill a secret key with Charlie's successful measurements, and the key generation performance is slightly better than that of the polarization-based MDI-QKD protocol in the two-dimensional OAM cases. Simultaneously, Alice and Bob can reduce the number of flipping the bits in the secure key distillation. It is indicated that a higher key generation rate performance could be obtained by a high dimensional OAM-MDI-QKD protocol because of the unlimited degree of freedom on OAM states. Moreover,the results show that the key generation rate and the transmission distance will decrease as the growth of the strength of atmospheric turbulence(AT) and the link attenuation. In addition, the decoy states used in the proposed protocol can get a considerable good performance without the need for an ideal source.展开更多
The structure and measurement theory of a single-axis integrated inertia measurement device are discussed in this paper.The acceleration and angle velocity can be detected by the proposed sensor at the same time.The k...The structure and measurement theory of a single-axis integrated inertia measurement device are discussed in this paper.The acceleration and angle velocity can be detected by the proposed sensor at the same time.The ki- netic model of the device is also established.In addition,the signal generation of the single-axis integrated inertia measurement device is analyzed and simulated.The results of the model are consistent with simulation result.展开更多
We hereby propose a software solution to perform high quality electrical measurements for the characterization of WORM (write-once read many), a new generation memory device which is being intensively studied for non-...We hereby propose a software solution to perform high quality electrical measurements for the characterization of WORM (write-once read many), a new generation memory device which is being intensively studied for non-volatile data storage. The as-proposed software is completely based on .NET framework and sample C# code. The paper performed a relevant measurement based on this software. Working WORM devices, based on a polymeric matrix embedded with gold and copper sulfide nanoparticles, have been used for test measurements. The aim of this paper is to show the main steps to develop a fully working measurement software without using any expensive dedicated software.展开更多
Accuracy electronic root canal length measurement devices were important for root canal treatment. Aim: To evaluate and compare accuracy of the two electronic root canal length measurement devices;two frequencies impe...Accuracy electronic root canal length measurement devices were important for root canal treatment. Aim: To evaluate and compare accuracy of the two electronic root canal length measurement devices;two frequencies impedance ratio and multi frequencies. Methods: Forty anterior teeth were sectioned on their cervical area. All samples were measured root canal length by radiographic. On the second phase, all the samples were measured by two frequencies impedance ratio and multi frequencies electronic devices. In the final phase, the teeth were split vertically and actual lengths were measured. All measurement by radiographic and electronic method was subtracted with actual length. Statistical analysis was performed using Chi-square and the Kolmogorov-Smirnov test. Results: Accuracy of the two frequencies impedance ratio 50% and multi frequencies 47.5%. No statistical significance between two frequencies impedance ratio and multi frequencies. Conclusions: There is no difference between ratio two impedance frequencies and multi frequencies.展开更多
Accuracy measurement of the Non-soluble Deposit Density (NSDD) on the insulator surface is very important for the transmission line anti-pollution flashover works. A method to measure the NSDD on double sheds porcelai...Accuracy measurement of the Non-soluble Deposit Density (NSDD) on the insulator surface is very important for the transmission line anti-pollution flashover works. A method to measure the NSDD on double sheds porcelain insulator surface based on laser transmission principle is proposed in this paper. Laser unit and luminous intensity sensor are installed between the up and down surface of the double sheds porcelain insulators, two glass tablets are put between the double sheds. The contamination on the glass tablets will influence the luminous intensity that reaches the intensity sensor. The luminous signal is changed to electrical signal, and the insulator’s NSDD could be obtained based on the difference of luminous intensity. The device can be used in online monitoring of the insulator's NSDD condition on the insulator surface.展开更多
On the one hand,existing measurement device independent quantum key distribution(MDI-QKD)protocols have usually adopted single photon source(SPS)and weak coherent photon(WCP),however,these protocols have suffered from...On the one hand,existing measurement device independent quantum key distribution(MDI-QKD)protocols have usually adopted single photon source(SPS)and weak coherent photon(WCP),however,these protocols have suffered from multi-photon problem brought from photon splitter number attacks.On the other hand,the orbital angular momentum(OAM)-MDI-QKD protocol does not need to compare and adjust the reference frame,solving the dependency of the base in the MDI-QKD protocol.Given that,we propose the OAM-MDI-QKD protocol based on the parametric light sources which mainly include single-photon-added-coherent(SPACS)and heralded single-photon sources(HSPS).Due to the stability of OAM and the participation of parametric light sources,the performance of MDI-QKD protocol gradually approaches the ideal situation.Numerical simulation shows that compared with WCP scheme,HSPS and SPACS schemes have increased the maximum secure transmission distance by 30 km and 40 km respectively.展开更多
In order to apply the LM device previously developed to precisely measuring small motion trajectories located on the different motion planes, three major improvements are successfully performed under the condition of ...In order to apply the LM device previously developed to precisely measuring small motion trajectories located on the different motion planes, three major improvements are successfully performed under the condition of completely maintaining the advantages of the device. These improvements include 1) development of a novel connection mechanism to smoothly attach the device to the spindle of a machining centre;2) employment of a new data sampling method to achieve a high sampling frequency independent of the operating system of the control computer;and 3) proposal of a set-up method to conveniently install the device on the test machining centre with respect to different motion planes. Practical measurement experiment results with the improved device on a machining centre sufficiently demonstrate the effectiveness of the improvements and confirm several features including a very good response to small displacement close to the resolution of the device, high precision, repeatability and reliance. Moreover, based on the measurement results for a number of trajectories for a wide range of motion conditions, the error characteristics of small size motions are systematically discussed and the effect of the movement size and feed rate on the motion accuracy is verified for the machining centre tested.展开更多
Measurement-device-independent quantum cryptographic conferencing(MDI-QCC) protocol puts MDI quantum key distribution(MDI-QKD) forwards to multi-party applications, and suggests a significant framework for practic...Measurement-device-independent quantum cryptographic conferencing(MDI-QCC) protocol puts MDI quantum key distribution(MDI-QKD) forwards to multi-party applications, and suggests a significant framework for practical multi-party quantum communication. In order to mitigate the experimental complexity of MDI-QCC and remove the key assumption(the sources are trusted) in MDI-QCC, we extend the framework of MDI-QKD with an untrusted source to MDI-QCC and give the rigorous security analysis of MDI-QCC with an untrusted source. What is more, in the security analysis we clearly provide a rigorous analytical method for parameters' estimation, which with simple modifications can be applied to not only MDI-QKD with an untrusted source but also arbitrary multi-party communication protocol with an untrusted source. The simulation results show that at reasonable distances the asymptotic key rates for the two cases(with trusted and untrusted sources) almost overlap, which indicates the feasibility of our protocol.展开更多
The effects of weather conditions are ubiquitous in practical wireless quantum communication links.Here in this work,the performances of atmospheric continuous-variable measurement-device-independent quantum key distr...The effects of weather conditions are ubiquitous in practical wireless quantum communication links.Here in this work,the performances of atmospheric continuous-variable measurement-device-independent quantum key distribution(CV-MDI-QKD)under diverse weather conditions are analyzed quantitatively.According to the Mie scattering theory and atmospheric CV-MDI-QKD model,we numerically simulate the relationship between performance of CV-MDI-QKD and the rainy and foggy conditions,aiming to get close to the actual combat environment in the future.The results show that both rain and fog will degrade the performance of the CV-MDI-QKD protocol.Under the rainy condition,the larger the raindrop diameter,the more obvious the extinction effect is and the lower the secret key rate accordingly.In addition,we find that the secret key rate decreases with the increase of spot deflection distance and the fluctuation of deflection.Under the foggy condition,the results illustrate that the transmittance decreases with the increase of droplet radius or deflection distance,which eventually yields the decrease in the secret key rate.Besides,in both weather conditions,the increase of transmission distance also leads the secret key rate to deteriorate.Our work can provide a foundation for evaluating the performance evaluation and successfully implementing the atmospheric CV-MDI-QKD in the future field operation environment under different weather conditions.展开更多
This paper presents the study and application of the electronic device anti-interference techniques underhigh voltage and/or heavy current electro-magnetic circumstance in power system.[
Automatic compensation of grinding wheel wear in dry grinding is accomplished by an image based online measurement method. A kind of PC-based charge-coupled device image recognition system is schemed out, which detect...Automatic compensation of grinding wheel wear in dry grinding is accomplished by an image based online measurement method. A kind of PC-based charge-coupled device image recognition system is schemed out, which detects the topography changes of the grinding wheel surface. Profile data, which corresponds to the wear and the topography, is measured by using a digital image processing method. The grinding wheel wear is evalualed by analyzing the position deviation of the grinding wheel edge. The online wear compensation is achieved according to the measure results. The precise detection and automatic compensation system is integrated into an open structure CNC curve grinding machine. A practical application is carried out to fulfil the precision curve grinding. The experimental results confirm the benefits of the proposed techniques, and the online detection accuracy is less than 5 um. The grinding machine provides higher precision according to the in-process grinding wheel error compensation.展开更多
The ability of accurate and scalable mobile device recognition is critically important for mobile network operators and ISPs to understand their customers' behaviours and enhance their user experience.In this pape...The ability of accurate and scalable mobile device recognition is critically important for mobile network operators and ISPs to understand their customers' behaviours and enhance their user experience.In this paper,we propose a novel method for mobile device model recognition by using statistical information derived from large amounts of mobile network traffic data.Specifically,we create a Jaccardbased coefficient measure method to identify a proper keyword representing each mobile device model from massive unstructured textual HTTP access logs.To handle the large amount of traffic data generated from large mobile networks,this method is designed as a set of parallel algorithms,and is implemented through the MapReduce framework which is a distributed parallel programming model with proven low-cost and high-efficiency features.Evaluations using real data sets show that our method can accurately recognise mobile client models while meeting the scalability and producer-independency requirements of large mobile network operators.Results show that a 91.5% accuracy rate is achieved for recognising mobile client models from 2 billion records,which is dramatically higher than existing solutions.展开更多
基金supported by the project of Science & Technology Department of Sichuan Province (Grand No: 2015JY0235)National Natural Science Foundation of China (Grand No: 51509174)the Science and Technology Service Network Initiative (No. KFJ-SW-STS-180)
文摘The impact effect of boulder within debris flow is the key factor contributing to peak impact as well as to the failure of debris flow control work. So accurate measuring and calculating the impact force of debris flow can ensure the engineering design strength. However, limited to the existing laboratory conditions and piezoelectric sensor performance, it is impossible, based on the conventional measurements, to devise a computing method for expressing a reliable boulder impact force. This paper has therefore designed a new measurement device according to the method of integrating Fiber Bragg grating(FBG) and reinforced concrete composite beam(RCB) for measuring the impact force of debris flows, i.e. mounting FBG on the axially stressed steel bar in the composite beam at regular intervals to monitor the steel strain. RCB plays the role of contacting debris flow and protecting FBG sensors. Taking this new device as the experimental object, drop testing is designed for simulating and reflecting the boulder impact force. In a series of impacting tests, the relationship between the peak dynamic strain value of the steel bar and the impact force is analyzed, and based on which, an inversion model that uses the steel bar strain as the independent variable is established for calculating the boulder impact force.The experimental results show that this new inversion model can determine the impact force value and its acting position with a system error of 18.1%, which can provide an experimental foundation for measuring the impact force of boulders within the debris flow by the new FBG-based device.
文摘Rehabilitation devices help to recover the physical abilities of patients. This study aims to develop a portable rehabilitation device that is safe to use when?patients are holding it by hands. In a previous study, to realize a home rehabilitation device, a flexible spherical actuator that can provide motion to patients was developed. In this study, to measure the relative position between both handling stages, a 3D coordinate measuring device using three wire-type linear potentiometers and an embedded controller was proposed and tested. In this paper, the spherical actuator with built-in 3D coordinate measuring device is described. The measuring method and experimental results obtained are also presented. The tracking position control of the actuator using the measuring device was carried out. As a result, the position of the handling stages can be successfully controlled using the feedback signal from the tested?measuring device.
文摘The clearance of the hemisphere dynamic pressure motor is small and difficult to measure, the measurement method of micro clearance is studied. The shortcomings of the original measurement method are analyzed, and a clearance measuring device for the hemisphere dynamic pressure motor is designed, which improves the measurement efficiency and stability.
文摘The paper mainly introduces concrete design of the hardware and program steps of Infrared Telecontrol Code Measuring Device based on AT89C51RC. In addition, it also gives out the design circuit of infrared transmitter and infrared receiver and the typical design circuit of the system, and the application method as well. Through particularly researching on sending and receiving technology of in- frared, a precise method decoding the signal send by infrared controller and its circuit is designed.
文摘Copper Zinc Antimony Sulfide(CZAS)is derived from Copper Antimony Sulfide(CAS),a famatinite class of compound.In the current paper,the first step for using Copper,Zinc,Antimony and Sulfide as materials in manufacturing synchrotronic biosensor-namely increasing the sensitivity of biosensor through creating Copper Zinc Antimony Sulfide,CZAS(Cu1.18Zn0.40Sb1.90S7.2)semiconductor and using it instead of Copper Tin Sulfide,CTS(Cu2SnS3)for tracking,monitoring,imaging,measuring,diagnosing and detecting cancer cells,is evaluated.Further,optimization of tris(2,2'-bipyridyl)ruthenium(II)(Ru(bpy)32+)concentrations and Copper Zinc Antimony Sulfide,CZAS(Cu1.18Zn0.40Sb1.90S7.2)semiconductor as two main and effective materials in the intensity of synchrotron for tracking,monitoring,imaging,measuring,diagnosing and detecting cancer cells are considered so that the highest sensitivity obtains.In this regard,various concentrations of two materials were prepared and photon emission was investigated in the absence of cancer cells.On the other hand,ccancer diagnosis requires the analysis of images and attributes as well as collecting many clinical and mammography variables.In diagnosis of cancer,it is important to determine whether a tumor is benign or malignant.The information about cancer risk prediction along with the type of tumor are crucial for patients and effective medical decision making.An ideal diagnostic system could effectively distinguish between benign and malignant cells;however,such a system has not been created yet.In this study,a model is developed to improve the prediction probability of cancer.It is necessary to have such a prediction model as the survival probability of cancer is high when patients are diagnosed at early stages.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2006AA06A208)
文摘Time delay and integration (TDI) charge coupled device (CCD) noise sets a fundamental limit on image sensor performance, especially under low illumination in remote sensing applications. After introducing the complete sources of CCD noise, we study the effects of TDI operation mode on noise, and the relationship between different types of noise and number of the TDI stage. Then we propose a new technique to identify and measure sources of TDI CCD noise employing mathematical statistics theory, where theoretical analysis shows that noise estimated formulation converges well. Finally, we establish a testing platform to carry out experiments, and a standard TDI CCD is calibrated by using the proposed method. The experimental results show that the noise analysis and measurement methods presented in this paper are useful for modeling TDI CCDs.
文摘We have reviewed a set of recently published studies that compared the anterior chamber depth(ACD) and/or white-to-white(WTW) distance obtained by means of different measuring devices.Since some of those studies reached contradictory conclusions regarding device interchangeability,this review was carried out in attempting to clarify which clinical devices can or cannot be considered as interchangeable in clinical practice to measure ACD and/or WTW distance,among these devices:A-scan,ultrasound biomicroscopy,Orbscan and Orbscan Ⅱ(Bausch&Lomb Surgical Inc.,San Dimas,California,USA),Pentacam and Pentacam HR(Oculus,Wetzlar,Germany),Galilei(Ziemer,Switzerland),Visante optical coherence tomography(Visante OCT,Carl Zeiss Meditec Inc.,Dublin,California,USA),lOLMaster(Carl Zeiss Meditec,Jena,Germany),and Lenstar LS 900/Biograph(Haag-Streit AG,Koeniz,Switzerland/Alcon Laboratories Inc.,Ft Worth,Texas,USA).
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61271238 and 61475075)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20123223110003)+7 种基金the Natural Science Research Foundation for Universities of Jiangsu Province of China(Grant No.11KJA510002)the Open Research Fund of Key Laboratory of Broadband Wireless Communication and Sensor Network TechnologyMinistry of EducationChina(Grant No.NYKL2015011)the Innovation Program of Graduate Education of Jiangsu ProvinceChina(Grant No.KYLX0810)partially supported by Qinglan Project of Jiangsu ProvinceChina
文摘In this paper, we propose a measurement-device-independent quantum-key-distribution(MDI-QKD) protocol using orbital angular momentum(OAM) in free space links, named the OAM-MDI-QKD protocol. In the proposed protocol,the OAM states of photons, instead of polarization states, are used as the information carriers to avoid the reference frame alignment, the decoy-state is adopted to overcome the security loophole caused by the weak coherent pulse source, and the high efficient OAM-sorter is adopted as the measurement tool for Charlie to obtain the output OAM state. Here, Charlie may be an untrusted third party. The results show that the authorized users, Alice and Bob, could distill a secret key with Charlie's successful measurements, and the key generation performance is slightly better than that of the polarization-based MDI-QKD protocol in the two-dimensional OAM cases. Simultaneously, Alice and Bob can reduce the number of flipping the bits in the secure key distillation. It is indicated that a higher key generation rate performance could be obtained by a high dimensional OAM-MDI-QKD protocol because of the unlimited degree of freedom on OAM states. Moreover,the results show that the key generation rate and the transmission distance will decrease as the growth of the strength of atmospheric turbulence(AT) and the link attenuation. In addition, the decoy states used in the proposed protocol can get a considerable good performance without the need for an ideal source.
基金Supported by Shanxi Province Young Leaders on Science and by Program for New Century Excellent Talents in University(NCET)
文摘The structure and measurement theory of a single-axis integrated inertia measurement device are discussed in this paper.The acceleration and angle velocity can be detected by the proposed sensor at the same time.The ki- netic model of the device is also established.In addition,the signal generation of the single-axis integrated inertia measurement device is analyzed and simulated.The results of the model are consistent with simulation result.
文摘We hereby propose a software solution to perform high quality electrical measurements for the characterization of WORM (write-once read many), a new generation memory device which is being intensively studied for non-volatile data storage. The as-proposed software is completely based on .NET framework and sample C# code. The paper performed a relevant measurement based on this software. Working WORM devices, based on a polymeric matrix embedded with gold and copper sulfide nanoparticles, have been used for test measurements. The aim of this paper is to show the main steps to develop a fully working measurement software without using any expensive dedicated software.
文摘Accuracy electronic root canal length measurement devices were important for root canal treatment. Aim: To evaluate and compare accuracy of the two electronic root canal length measurement devices;two frequencies impedance ratio and multi frequencies. Methods: Forty anterior teeth were sectioned on their cervical area. All samples were measured root canal length by radiographic. On the second phase, all the samples were measured by two frequencies impedance ratio and multi frequencies electronic devices. In the final phase, the teeth were split vertically and actual lengths were measured. All measurement by radiographic and electronic method was subtracted with actual length. Statistical analysis was performed using Chi-square and the Kolmogorov-Smirnov test. Results: Accuracy of the two frequencies impedance ratio 50% and multi frequencies 47.5%. No statistical significance between two frequencies impedance ratio and multi frequencies. Conclusions: There is no difference between ratio two impedance frequencies and multi frequencies.
文摘Accuracy measurement of the Non-soluble Deposit Density (NSDD) on the insulator surface is very important for the transmission line anti-pollution flashover works. A method to measure the NSDD on double sheds porcelain insulator surface based on laser transmission principle is proposed in this paper. Laser unit and luminous intensity sensor are installed between the up and down surface of the double sheds porcelain insulators, two glass tablets are put between the double sheds. The contamination on the glass tablets will influence the luminous intensity that reaches the intensity sensor. The luminous signal is changed to electrical signal, and the insulator’s NSDD could be obtained based on the difference of luminous intensity. The device can be used in online monitoring of the insulator's NSDD condition on the insulator surface.
基金Hong Lai has been supported by the National Natural Science Foundation of China(No.61702427)the Chongqing innovation project(No.cx2018076)+1 种基金the Fundamental Research Funds for the Central Universities(XDJK2018C048)the financial support in part by the 1000-Plan of Chongqing by Southwest University(No.SWU116007)。
文摘On the one hand,existing measurement device independent quantum key distribution(MDI-QKD)protocols have usually adopted single photon source(SPS)and weak coherent photon(WCP),however,these protocols have suffered from multi-photon problem brought from photon splitter number attacks.On the other hand,the orbital angular momentum(OAM)-MDI-QKD protocol does not need to compare and adjust the reference frame,solving the dependency of the base in the MDI-QKD protocol.Given that,we propose the OAM-MDI-QKD protocol based on the parametric light sources which mainly include single-photon-added-coherent(SPACS)and heralded single-photon sources(HSPS).Due to the stability of OAM and the participation of parametric light sources,the performance of MDI-QKD protocol gradually approaches the ideal situation.Numerical simulation shows that compared with WCP scheme,HSPS and SPACS schemes have increased the maximum secure transmission distance by 30 km and 40 km respectively.
文摘In order to apply the LM device previously developed to precisely measuring small motion trajectories located on the different motion planes, three major improvements are successfully performed under the condition of completely maintaining the advantages of the device. These improvements include 1) development of a novel connection mechanism to smoothly attach the device to the spindle of a machining centre;2) employment of a new data sampling method to achieve a high sampling frequency independent of the operating system of the control computer;and 3) proposal of a set-up method to conveniently install the device on the test machining centre with respect to different motion planes. Practical measurement experiment results with the improved device on a machining centre sufficiently demonstrate the effectiveness of the improvements and confirm several features including a very good response to small displacement close to the resolution of the device, high precision, repeatability and reliance. Moreover, based on the measurement results for a number of trajectories for a wide range of motion conditions, the error characteristics of small size motions are systematically discussed and the effect of the movement size and feed rate on the motion accuracy is verified for the machining centre tested.
基金supported by the National Basic Research Program of China(Grant No.2013CB338002)the National Natural Science Foundation of China(Grant Nos.11304397 and 61505261)
文摘Measurement-device-independent quantum cryptographic conferencing(MDI-QCC) protocol puts MDI quantum key distribution(MDI-QKD) forwards to multi-party applications, and suggests a significant framework for practical multi-party quantum communication. In order to mitigate the experimental complexity of MDI-QCC and remove the key assumption(the sources are trusted) in MDI-QCC, we extend the framework of MDI-QKD with an untrusted source to MDI-QCC and give the rigorous security analysis of MDI-QCC with an untrusted source. What is more, in the security analysis we clearly provide a rigorous analytical method for parameters' estimation, which with simple modifications can be applied to not only MDI-QKD with an untrusted source but also arbitrary multi-party communication protocol with an untrusted source. The simulation results show that at reasonable distances the asymptotic key rates for the two cases(with trusted and untrusted sources) almost overlap, which indicates the feasibility of our protocol.
基金Project supported by the National Natural Science Foundation of China(Grant No.61505261).
文摘The effects of weather conditions are ubiquitous in practical wireless quantum communication links.Here in this work,the performances of atmospheric continuous-variable measurement-device-independent quantum key distribution(CV-MDI-QKD)under diverse weather conditions are analyzed quantitatively.According to the Mie scattering theory and atmospheric CV-MDI-QKD model,we numerically simulate the relationship between performance of CV-MDI-QKD and the rainy and foggy conditions,aiming to get close to the actual combat environment in the future.The results show that both rain and fog will degrade the performance of the CV-MDI-QKD protocol.Under the rainy condition,the larger the raindrop diameter,the more obvious the extinction effect is and the lower the secret key rate accordingly.In addition,we find that the secret key rate decreases with the increase of spot deflection distance and the fluctuation of deflection.Under the foggy condition,the results illustrate that the transmittance decreases with the increase of droplet radius or deflection distance,which eventually yields the decrease in the secret key rate.Besides,in both weather conditions,the increase of transmission distance also leads the secret key rate to deteriorate.Our work can provide a foundation for evaluating the performance evaluation and successfully implementing the atmospheric CV-MDI-QKD in the future field operation environment under different weather conditions.
文摘This paper presents the study and application of the electronic device anti-interference techniques underhigh voltage and/or heavy current electro-magnetic circumstance in power system.[
基金This project is supported by Science and Technology Development Foundation of Shanghai Municipal Commission of Science and Technology, China (No.021111125).
文摘Automatic compensation of grinding wheel wear in dry grinding is accomplished by an image based online measurement method. A kind of PC-based charge-coupled device image recognition system is schemed out, which detects the topography changes of the grinding wheel surface. Profile data, which corresponds to the wear and the topography, is measured by using a digital image processing method. The grinding wheel wear is evalualed by analyzing the position deviation of the grinding wheel edge. The online wear compensation is achieved according to the measure results. The precise detection and automatic compensation system is integrated into an open structure CNC curve grinding machine. A practical application is carried out to fulfil the precision curve grinding. The experimental results confirm the benefits of the proposed techniques, and the online detection accuracy is less than 5 um. The grinding machine provides higher precision according to the in-process grinding wheel error compensation.
基金supported in part by the National Natural Science Foundation of China under Grant No.61072061the National Science and Technology Major Projects under Grant No.2012ZX03002008the Fundamental Research Funds for the Central Universities under Grant No.2012RC0121
文摘The ability of accurate and scalable mobile device recognition is critically important for mobile network operators and ISPs to understand their customers' behaviours and enhance their user experience.In this paper,we propose a novel method for mobile device model recognition by using statistical information derived from large amounts of mobile network traffic data.Specifically,we create a Jaccardbased coefficient measure method to identify a proper keyword representing each mobile device model from massive unstructured textual HTTP access logs.To handle the large amount of traffic data generated from large mobile networks,this method is designed as a set of parallel algorithms,and is implemented through the MapReduce framework which is a distributed parallel programming model with proven low-cost and high-efficiency features.Evaluations using real data sets show that our method can accurately recognise mobile client models while meeting the scalability and producer-independency requirements of large mobile network operators.Results show that a 91.5% accuracy rate is achieved for recognising mobile client models from 2 billion records,which is dramatically higher than existing solutions.