Adaptive detection of range-spread targets is considered in the presence of subspace interference plus Gaussian clutter with unknown covariance matrix.The target signal and interference are supposed to lie in two line...Adaptive detection of range-spread targets is considered in the presence of subspace interference plus Gaussian clutter with unknown covariance matrix.The target signal and interference are supposed to lie in two linearly independent subspaces with deterministic but unknown coordinates.Relying on the two-step criteria,two adaptive detectors based on Gradient tests are proposed,in homogeneous and partially homogeneous clutter plus subspace interference,respectively.Both of the proposed detectors exhibit theoretically constant false alarm rate property against unknown clutter covariance matrix as well as the power level.Numerical results show that,the proposed detectors have better performance than their existing counterparts,especially for mismatches in the signal steering vectors.展开更多
Overlooking the issue of false alarm suppression in heterogeneous change detection leads to inferior detection per-formance.This paper proposes a method to handle false alarms in heterogeneous change detection.A light...Overlooking the issue of false alarm suppression in heterogeneous change detection leads to inferior detection per-formance.This paper proposes a method to handle false alarms in heterogeneous change detection.A lightweight network of two channels is bulit based on the combination of convolutional neural network(CNN)and graph convolutional network(GCN).CNNs learn feature difference maps of multitemporal images,and attention modules adaptively fuse CNN-based and graph-based features for different scales.GCNs with a new kernel filter adaptively distinguish between nodes with the same and those with different labels,generating change maps.Experimental evaluation on two datasets validates the efficacy of the pro-posed method in addressing false alarms.展开更多
Frame detection is important in burst communication systems for its contribu- tions in frame synchronization. It locates the information bits in the received data stream at receivers. To realize frame detection in the...Frame detection is important in burst communication systems for its contribu- tions in frame synchronization. It locates the information bits in the received data stream at receivers. To realize frame detection in the presence of additive white Gaussian noise (AWGN) and frequency offset, a constant false alarm rate (CFAR) detector is proposed through exploitation of cyclic autocorrelation feature implied in the preamble. The frame detection can be achieved prior to bit timing recovery. The threshold setting is independent of the signal level and noise level by utilizing CFAR method. Mathematical expressions is derived in AWGN channel by considering the probability of false alarm and probability of detection, separately. Given the probability of false alarm, the mathematical relationship between the frame detection performance and EJNo of received signals is established. Ex- perimental results are also presented in accor- dance with analysis.展开更多
The security of the wireless sensor network-Internet of Things(WSN-IoT)network is more challenging due to its randomness and self-organized nature.Intrusion detection is one of the key methodologies utilized to ensure...The security of the wireless sensor network-Internet of Things(WSN-IoT)network is more challenging due to its randomness and self-organized nature.Intrusion detection is one of the key methodologies utilized to ensure the security of the network.Conventional intrusion detection mechanisms have issues such as higher misclassification rates,increased model complexity,insignificant feature extraction,increased training time,increased run time complexity,computation overhead,failure to identify new attacks,increased energy consumption,and a variety of other factors that limit the performance of the intrusion system model.In this research a security framework for WSN-IoT,through a deep learning technique is introduced using Modified Fuzzy-Adaptive DenseNet(MF_AdaDenseNet)and is benchmarked with datasets like NSL-KDD,UNSWNB15,CIDDS-001,Edge IIoT,Bot IoT.In this,the optimal feature selection using Capturing Dingo Optimization(CDO)is devised to acquire relevant features by removing redundant features.The proposed MF_AdaDenseNet intrusion detection model offers significant benefits by utilizing optimal feature selection with the CDO algorithm.This results in enhanced Detection Capacity with minimal computation complexity,as well as a reduction in False Alarm Rate(FAR)due to the consideration of classification error in the fitness estimation.As a result,the combined CDO-based feature selection and MF_AdaDenseNet intrusion detection mechanism outperform other state-of-the-art techniques,achieving maximal Detection Capacity,precision,recall,and F-Measure of 99.46%,99.54%,99.91%,and 99.68%,respectively,along with minimal FAR and Mean Absolute Error(MAE)of 0.9%and 0.11.展开更多
In modern industrial processes, timely detection and diagnosis of process abnormalities are critical for monitoring process operations. Various fault detection and diagnosis(FDD) methods have been proposed and impleme...In modern industrial processes, timely detection and diagnosis of process abnormalities are critical for monitoring process operations. Various fault detection and diagnosis(FDD) methods have been proposed and implemented, the performance of which, however, could be drastically influenced by the common presence of incomplete or missing data in real industrial scenarios. This paper presents a new FDD approach based on an incomplete data imputation technique for process fault recognition. It employs the modified stacked autoencoder,a deep learning structure, in the phase of incomplete data treatment, and classifies data representations rather than the imputed complete data in the phase of fault identification. A benchmark process, the Tennessee Eastman process, is employed to illustrate the effectiveness and applicability of the proposed method.展开更多
Hypothesis testing analysis and unknown parameter estimation of both the intermediate frequency(IF) and baseband GPS signal detection are given by using the generalized likelihood ratio test(GLRT) approach,applying th...Hypothesis testing analysis and unknown parameter estimation of both the intermediate frequency(IF) and baseband GPS signal detection are given by using the generalized likelihood ratio test(GLRT) approach,applying the model of GPS signal in white Gaussian noise,It is proved that the test statistic follows central or noncentral F distribution,It is also pointed out that the test statistic is nearly identical to central or noncentral chi-squared distribution because the processing samples are large enough to be considered as infinite in GPS acquisition problem.It is also proved that the probability of false alarm,the probability of detection and the threshold are affected largely when the hypothesis testing refers to the full pseudorandom noise(PRN) code phase and Doppler frequency search space cells instead of each individual cell.The performance of the test statistic is also given with combining the noncoherent integration.展开更多
Integrity is an important index for GNSS-based navigation and positioning, and the receiver autonomous integrity monitoring (RAIM) algorithm has been presented for integrity applications. In the integrated navigation ...Integrity is an important index for GNSS-based navigation and positioning, and the receiver autonomous integrity monitoring (RAIM) algorithm has been presented for integrity applications. In the integrated navigation systems of a global navigation satellite system (GNSS) and inertial navigation system (INS),the conventional RAIM algorithm has been developed to extended receiver autonomous integrity monitoring (ERAIM). However, the ERAIM algorithm may fail and a false alarm may generate once the measurements are contaminated by significant outliers, and this problem is rarely discussed in the existing literatures. In this paper, a robust fault detection and the corresponding data processing algorithm are proposed based on the ERAIM algorithm and the robust estimation. In the proposed algorithm, weights of the measurements are adjusted with the equivalent weight function, and the efficiency of the outlier detection and identification is improved, therefore, the estimates become more reliable, and the probability of the false alarm is decreased. Experiments with the data collected under actual environments are implemented, and results indicate that the proposed algorithm is more efficient than the conventional ERAIM algorithm for multiple outliers and a better filtering performance is achieved.展开更多
Interference is a key factor in radar return misdetection.Strong interference might make it difficult to detect the signal or targets.When interference occurs in the sidelobes of the antenna pattern,Sidelobe Cancellat...Interference is a key factor in radar return misdetection.Strong interference might make it difficult to detect the signal or targets.When interference occurs in the sidelobes of the antenna pattern,Sidelobe Cancellation(SLC)and Sidelobe Blanking are two unique solutions to solve this problem(SLB).Aside from this approach,the probability of false alert and likelihood of detection are the most essential parameters in radar.The chance of a false alarm for any radar system should be minimal,and as a result,the probability of detection should be high.There are several interference cancellation strategies in the literature that are used to sustain consistent false alarms regardless of the clutter environment.With the necessity for interference cancellation methods and the constant false alarm rate(CFAR),the Maisel SLC algorithm has been modified to create a new algorithm for recognizing targets in the presence of severe interference.The received radar returns and interference are simulated as non-stationary in this approach,and side-lobe interference is cancelled using an adaptive algorithm.By comparing the performance of adaptive algorithms,simulation results are shown.In a severe clutter situation,the simulation results demonstrate a considerable increase in target recognition and signal to noise ratio when compared to the previous technique.展开更多
A simple method using aided sliding rectangular windows for synchronization in energy detector (ED) receiver is proposed for impulse-based ultra wideband radios (IR-UWB) under binary pulse position modulation (PP...A simple method using aided sliding rectangular windows for synchronization in energy detector (ED) receiver is proposed for impulse-based ultra wideband radios (IR-UWB) under binary pulse position modulation (PPM), therefore grants an attractive solution for gaining low complexity while the accompanying performance loss in terms of UWB signal reception is comparatively low. Also, a method is developed to sup- press noise through accumulation of integrated results before synchronization point is reached. This proposed method can effectively reduce the impact of one of the major performance-degrading factors in ED receivers, i. e., noise caused by heightened noise floor due to large bandwidth product. Our theoretic work on this im- proved synchronization performance and relevant simulations are conducted on IEEE 802.15.4a channel mod- els, and results show that the proposed design scheme can effectively decrease both the probability of false alarm and probability of missed detection.展开更多
Currently,the Internet of Things(IoT)is revolutionizing communi-cation technology by facilitating the sharing of information between different physical devices connected to a network.To improve control,customization,f...Currently,the Internet of Things(IoT)is revolutionizing communi-cation technology by facilitating the sharing of information between different physical devices connected to a network.To improve control,customization,flexibility,and reduce network maintenance costs,a new Software-Defined Network(SDN)technology must be used in this infrastructure.Despite the various advantages of combining SDN and IoT,this environment is more vulnerable to various attacks due to the centralization of control.Most methods to ensure IoT security are designed to detect Distributed Denial-of-Service(DDoS)attacks,but they often lack mechanisms to mitigate their severity.This paper proposes a Multi-Attack Intrusion Detection System(MAIDS)for Software-Defined IoT Networks(SDN-IoT).The proposed scheme uses two machine-learning algorithms to improve detection efficiency and provide a mechanism to prevent false alarms.First,a comparative analysis of the most commonly used machine-learning algorithms to secure the SDN was performed on two datasets:the Network Security Laboratory Knowledge Discovery in Databases(NSL-KDD)and the Canadian Institute for Cyberse-curity Intrusion Detection Systems(CICIDS2017),to select the most suitable algorithms for the proposed scheme and for securing SDN-IoT systems.The algorithms evaluated include Extreme Gradient Boosting(XGBoost),K-Nearest Neighbor(KNN),Random Forest(RF),Support Vector Machine(SVM),and Logistic Regression(LR).Second,an algorithm for selecting the best dataset for machine learning in Intrusion Detection Systems(IDS)was developed to enable effective comparison between the datasets used in the development of the security scheme.The results showed that XGBoost and RF are the best algorithms to ensure the security of SDN-IoT and to be applied in the proposed security system,with average accuracies of 99.88%and 99.89%,respectively.Furthermore,the proposed security scheme reduced the false alarm rate by 33.23%,which is a significant improvement over prevalent schemes.Finally,tests of the algorithm for dataset selection showed that the rates of false positives and false negatives were reduced when the XGBoost and RF algorithms were trained on the CICIDS2017 dataset,making it the best for IDS compared to the NSL-KDD dataset.展开更多
Collaboration in wireless sensor systems must be fault-tolerant due to the harsh environmental conditions at which such systems can be deployed. This paper focuses on finding the signal processing algorithms for colla...Collaboration in wireless sensor systems must be fault-tolerant due to the harsh environmental conditions at which such systems can be deployed. This paper focuses on finding the signal processing algorithms for collaborative target detection based on the generalized approach to signal processing (GASP) in the presence of noise. The signal processing algorithms are efficient in terms of communication cost, precision, accuracy, and number of faulty sensors tolerable in the wireless sensor systems. Two types of generalized signal processing algorithms, namely, value fusion and decision fusion constructed according to GASP in the presence of noise, are identified first. When comparing their performance and communication overhead, the decision fusion algorithm is found to become superior to the value fusion algorithm as the ratio of faulty sensors to fault free sensors increases. The use of GASP under designing the value and decision fusion algorithms in wireless sensor systems allows us to obtain the same performance, but at low values of signal energy, as well as under employment of the universally adopted signal processing algorithms widely used in practice.展开更多
Unlike the existing resonance region radar systems (RRRS ) that transmit the orthogonal frequency division multiplexing (OFDM)multi-carrier waveform,the dense multi-carrier (DMC)radar waveform which has a narrow...Unlike the existing resonance region radar systems (RRRS ) that transmit the orthogonal frequency division multiplexing (OFDM)multi-carrier waveform,the dense multi-carrier (DMC)radar waveform which has a narrower frequency interval than the traditional OFDM waveform is proposed.Therefore,in the same frequency bandwidth,the DMC waveform contains more sub-carriers and provides more frequency diversity.Additionally,to further improve detection performance,a novel optimal weight accumulation target detection (OWATD)method is proposed,where the echo electromagnetic waves at different frequencies are accumulated with the optimal weight coefficients.Then,with the signal-to-noise ratio (SNR)of echo waveform approaching infinity,the asymptotic detection performance is analyzed, and the condition that the OWATD method with the DMC outperforms the matched filter with the OFDM is presented.Simulation results show that the DMC outperforms the OFDM in the target detection performance,and the OWATD method can further improve the detection performance of the traditional methods with both the OFDM and DMC radar waveform.展开更多
A new constant false alarm rate (CFAR) target detector for synthetic aperture radar (SAR) images is developed. For each pixel under test, both the local probability density function (PDF) of the pixel and the cl...A new constant false alarm rate (CFAR) target detector for synthetic aperture radar (SAR) images is developed. For each pixel under test, both the local probability density function (PDF) of the pixel and the clutter PDF in the reference window are estimated by the non-parametric density estimation. The target detector is defined as the mean square error (MSE) distance between the two PDFs. The CFAR detection in SAR images having multiplicative noise is achieved by adaptive kernel bandwidth proportional to the clutter level. In addition, for obtaining a threshold with respect to a given probability of false alarm (PFA), an unsupervised null distribution fitting method with outlier rejection is proposed. The effectiveness of the proposed target detector is demonstrated by the experiment result using the RADATSAT-2 SAR image.展开更多
The monitoring system of ship cabin based on single chip computer is introduced. The system can inspect the signal circulatively coming from sensors of all kinds, and give alarm when limit is broken. It demonstrated t...The monitoring system of ship cabin based on single chip computer is introduced. The system can inspect the signal circulatively coming from sensors of all kinds, and give alarm when limit is broken. It demonstrated the working principles, hardware block diagram and software flow diagram of the system.展开更多
A novel algorithm for the detection of ship target with high accuracy in the synthetic aperture radar(SAR) with high spatial resolution image is proposed. The SAR image may include not only the ship targets but also t...A novel algorithm for the detection of ship target with high accuracy in the synthetic aperture radar(SAR) with high spatial resolution image is proposed. The SAR image may include not only the ship targets but also the interferences such as the sea clutter,the strong reflection target,the sidelobe and so on.The conventional constant false alarm rate(CFAR) algorithm has some disadvantages,and it has not enough prior information about the size of the ships. Hence,it cannot separate the adjacent ships correctly. A comprehensive algorithm based on the modified CFAR algorithm and opening operation is presented to solve the problem,and the detection accuracy can be improved consequently. The results of SAR image illustrate the effectiveness of the method in this paper.展开更多
he cell averaging and the order statistics are two typical algorithms for constant false alarm rate detector in radar system. They have different advantages in stationary noise background and fluctuation clutter envir...he cell averaging and the order statistics are two typical algorithms for constant false alarm rate detector in radar system. They have different advantages in stationary noise background and fluctuation clutter environment respectively. This paper presents a doublethreshold constant false alarm rate detector constructed on the basis of synthesizing the advantages of the two algorithms above and avioding their disadvantages. The performance of the detector is analyzed, and the simulation result is given.展开更多
A most promising solution to the expansion of spectrum efficiency is cognitive radio(CR)and this expansion is achieved by permitting the licensed frequency bands to be accessed by unlicensed secondary users(SUs)with a...A most promising solution to the expansion of spectrum efficiency is cognitive radio(CR)and this expansion is achieved by permitting the licensed frequency bands to be accessed by unlicensed secondary users(SUs)with a lack of interference with licensed primary users(PUs).This utilization of CR networks in the spectrum sensing causes vulnerable attacks like primary user emulation(PUE)attack and here PUs play the role of malicious user and do not permit other users to utilize PUs channel even in their unavailability.On the basis of the traditional single-threshold energy detection algorithm,a novel modified double-threshold energy detector is formulated in the CR network and the detection probability,miss detection probability,probability of false alarm,and their inter-relationship are analyzed.This paper develops a modified double threshold energy detection cooperative spectrum sensing technique to alleviate the PUE attack.Finally,performance-based evaluation is carried out between the proposed and the existing energy detection spectrum sensing method that had no consideration on PUE attack.The resultant of the simulation in MATLAB has revealed that the proposed model has significantly mitigated PUE attack by means of providing outstanding performance.展开更多
This paper addresses the problem of joint optimization of subchannel selection and spectrum sensing time for multiband cognitive radio networks under the sensing capability constrains. In particular, we construct a mu...This paper addresses the problem of joint optimization of subchannel selection and spectrum sensing time for multiband cognitive radio networks under the sensing capability constrains. In particular, we construct a multiband spectrum sensing framework, and derive the probabilities of detection and false alarm taking the different subchannel gain into account. Furthermore, we formulate the multi- band sensing as a two-parameter optimization prob- lem under the sensing capability constrains and guaranteeing the QoS of the secondary user. Moreover, we develop a semi-analytical optimization scheme to achieve the optimal solution.展开更多
In this paper,we propose a sensing scheme based on energy detection,matched filter and cyclic prefix.Both Equal Gain Combining(EGC)and optimal combination of the aforementioned detectors are investigated in cooperativ...In this paper,we propose a sensing scheme based on energy detection,matched filter and cyclic prefix.Both Equal Gain Combining(EGC)and optimal combination of the aforementioned detectors are investigated in cooperative and non-cooperative spectrum sensing scenarios.In packet transmission systems such as OFDM(Orthogonal Frequency Division Multiple access)systems,the proposed scheme takes advantage of utilizing more samples than individual detectors,i.e.,cyclic prefix,training or pilot samples,and data payload samples.The proposed combine-sensing scheme offers higher detection probability and lower false alarm probability,as compared with the performance of individual detectors over the same frame duration.Simulation results are congruent with the theoretical curves and confirm the validity of our derivations.展开更多
With the conditions of small data size and low Signal-to-Noise Ratio (SNR), the application of Higher Order Statistics (HOS) is restrained not only by its high estimation variance,but also by its low estimation precis...With the conditions of small data size and low Signal-to-Noise Ratio (SNR), the application of Higher Order Statistics (HOS) is restrained not only by its high estimation variance,but also by its low estimation precision. Therefore, a modified HOS based Time Delay Estimation (TDE) algorithm is proposed to overcome these problems. Comparing with the conventional TDE algorithms, the estimation variance is improved greatly. A typical simulation example is completed in order to test the performance of the algorithm proposed, which shows that the proposed algorithm has advantages over the traditional ones in both detection performance and computation efficiency.展开更多
基金supported by the National Natural Science Foundation of China(61971432)Taishan Scholar Project of Shandong Province(tsqn201909156)the Outstanding Youth Innovation Team Program of University in Shandong Province(2019KJN031)。
文摘Adaptive detection of range-spread targets is considered in the presence of subspace interference plus Gaussian clutter with unknown covariance matrix.The target signal and interference are supposed to lie in two linearly independent subspaces with deterministic but unknown coordinates.Relying on the two-step criteria,two adaptive detectors based on Gradient tests are proposed,in homogeneous and partially homogeneous clutter plus subspace interference,respectively.Both of the proposed detectors exhibit theoretically constant false alarm rate property against unknown clutter covariance matrix as well as the power level.Numerical results show that,the proposed detectors have better performance than their existing counterparts,especially for mismatches in the signal steering vectors.
基金This work was supported by the Natural Science Foundation of Heilongjiang Province(LH2022F049).
文摘Overlooking the issue of false alarm suppression in heterogeneous change detection leads to inferior detection per-formance.This paper proposes a method to handle false alarms in heterogeneous change detection.A lightweight network of two channels is bulit based on the combination of convolutional neural network(CNN)and graph convolutional network(GCN).CNNs learn feature difference maps of multitemporal images,and attention modules adaptively fuse CNN-based and graph-based features for different scales.GCNs with a new kernel filter adaptively distinguish between nodes with the same and those with different labels,generating change maps.Experimental evaluation on two datasets validates the efficacy of the pro-posed method in addressing false alarms.
基金supported by National Science Foundation of China under Grant No.61401205
文摘Frame detection is important in burst communication systems for its contribu- tions in frame synchronization. It locates the information bits in the received data stream at receivers. To realize frame detection in the presence of additive white Gaussian noise (AWGN) and frequency offset, a constant false alarm rate (CFAR) detector is proposed through exploitation of cyclic autocorrelation feature implied in the preamble. The frame detection can be achieved prior to bit timing recovery. The threshold setting is independent of the signal level and noise level by utilizing CFAR method. Mathematical expressions is derived in AWGN channel by considering the probability of false alarm and probability of detection, separately. Given the probability of false alarm, the mathematical relationship between the frame detection performance and EJNo of received signals is established. Ex- perimental results are also presented in accor- dance with analysis.
基金Authors extend their appreciation to King Saud University for funding the publication of this research through the Researchers Supporting Project number(RSPD2024R809),King Saud University,Riyadh,Saudi Arabia.
文摘The security of the wireless sensor network-Internet of Things(WSN-IoT)network is more challenging due to its randomness and self-organized nature.Intrusion detection is one of the key methodologies utilized to ensure the security of the network.Conventional intrusion detection mechanisms have issues such as higher misclassification rates,increased model complexity,insignificant feature extraction,increased training time,increased run time complexity,computation overhead,failure to identify new attacks,increased energy consumption,and a variety of other factors that limit the performance of the intrusion system model.In this research a security framework for WSN-IoT,through a deep learning technique is introduced using Modified Fuzzy-Adaptive DenseNet(MF_AdaDenseNet)and is benchmarked with datasets like NSL-KDD,UNSWNB15,CIDDS-001,Edge IIoT,Bot IoT.In this,the optimal feature selection using Capturing Dingo Optimization(CDO)is devised to acquire relevant features by removing redundant features.The proposed MF_AdaDenseNet intrusion detection model offers significant benefits by utilizing optimal feature selection with the CDO algorithm.This results in enhanced Detection Capacity with minimal computation complexity,as well as a reduction in False Alarm Rate(FAR)due to the consideration of classification error in the fitness estimation.As a result,the combined CDO-based feature selection and MF_AdaDenseNet intrusion detection mechanism outperform other state-of-the-art techniques,achieving maximal Detection Capacity,precision,recall,and F-Measure of 99.46%,99.54%,99.91%,and 99.68%,respectively,along with minimal FAR and Mean Absolute Error(MAE)of 0.9%and 0.11.
基金supported by the National Natural Science Foundation of China(61433001)Tsinghua University Initiative Scientific Research Program。
文摘In modern industrial processes, timely detection and diagnosis of process abnormalities are critical for monitoring process operations. Various fault detection and diagnosis(FDD) methods have been proposed and implemented, the performance of which, however, could be drastically influenced by the common presence of incomplete or missing data in real industrial scenarios. This paper presents a new FDD approach based on an incomplete data imputation technique for process fault recognition. It employs the modified stacked autoencoder,a deep learning structure, in the phase of incomplete data treatment, and classifies data representations rather than the imputed complete data in the phase of fault identification. A benchmark process, the Tennessee Eastman process, is employed to illustrate the effectiveness and applicability of the proposed method.
文摘Hypothesis testing analysis and unknown parameter estimation of both the intermediate frequency(IF) and baseband GPS signal detection are given by using the generalized likelihood ratio test(GLRT) approach,applying the model of GPS signal in white Gaussian noise,It is proved that the test statistic follows central or noncentral F distribution,It is also pointed out that the test statistic is nearly identical to central or noncentral chi-squared distribution because the processing samples are large enough to be considered as infinite in GPS acquisition problem.It is also proved that the probability of false alarm,the probability of detection and the threshold are affected largely when the hypothesis testing refers to the full pseudorandom noise(PRN) code phase and Doppler frequency search space cells instead of each individual cell.The performance of the test statistic is also given with combining the noncoherent integration.
基金National Natural Science Foundation of China(No.41774026)。
文摘Integrity is an important index for GNSS-based navigation and positioning, and the receiver autonomous integrity monitoring (RAIM) algorithm has been presented for integrity applications. In the integrated navigation systems of a global navigation satellite system (GNSS) and inertial navigation system (INS),the conventional RAIM algorithm has been developed to extended receiver autonomous integrity monitoring (ERAIM). However, the ERAIM algorithm may fail and a false alarm may generate once the measurements are contaminated by significant outliers, and this problem is rarely discussed in the existing literatures. In this paper, a robust fault detection and the corresponding data processing algorithm are proposed based on the ERAIM algorithm and the robust estimation. In the proposed algorithm, weights of the measurements are adjusted with the equivalent weight function, and the efficiency of the outlier detection and identification is improved, therefore, the estimates become more reliable, and the probability of the false alarm is decreased. Experiments with the data collected under actual environments are implemented, and results indicate that the proposed algorithm is more efficient than the conventional ERAIM algorithm for multiple outliers and a better filtering performance is achieved.
文摘Interference is a key factor in radar return misdetection.Strong interference might make it difficult to detect the signal or targets.When interference occurs in the sidelobes of the antenna pattern,Sidelobe Cancellation(SLC)and Sidelobe Blanking are two unique solutions to solve this problem(SLB).Aside from this approach,the probability of false alert and likelihood of detection are the most essential parameters in radar.The chance of a false alarm for any radar system should be minimal,and as a result,the probability of detection should be high.There are several interference cancellation strategies in the literature that are used to sustain consistent false alarms regardless of the clutter environment.With the necessity for interference cancellation methods and the constant false alarm rate(CFAR),the Maisel SLC algorithm has been modified to create a new algorithm for recognizing targets in the presence of severe interference.The received radar returns and interference are simulated as non-stationary in this approach,and side-lobe interference is cancelled using an adaptive algorithm.By comparing the performance of adaptive algorithms,simulation results are shown.In a severe clutter situation,the simulation results demonstrate a considerable increase in target recognition and signal to noise ratio when compared to the previous technique.
基金Sponsored by the Ministerial Level Advanced Research Foundation (2006AA018293)
文摘A simple method using aided sliding rectangular windows for synchronization in energy detector (ED) receiver is proposed for impulse-based ultra wideband radios (IR-UWB) under binary pulse position modulation (PPM), therefore grants an attractive solution for gaining low complexity while the accompanying performance loss in terms of UWB signal reception is comparatively low. Also, a method is developed to sup- press noise through accumulation of integrated results before synchronization point is reached. This proposed method can effectively reduce the impact of one of the major performance-degrading factors in ED receivers, i. e., noise caused by heightened noise floor due to large bandwidth product. Our theoretic work on this im- proved synchronization performance and relevant simulations are conducted on IEEE 802.15.4a channel mod- els, and results show that the proposed design scheme can effectively decrease both the probability of false alarm and probability of missed detection.
文摘Currently,the Internet of Things(IoT)is revolutionizing communi-cation technology by facilitating the sharing of information between different physical devices connected to a network.To improve control,customization,flexibility,and reduce network maintenance costs,a new Software-Defined Network(SDN)technology must be used in this infrastructure.Despite the various advantages of combining SDN and IoT,this environment is more vulnerable to various attacks due to the centralization of control.Most methods to ensure IoT security are designed to detect Distributed Denial-of-Service(DDoS)attacks,but they often lack mechanisms to mitigate their severity.This paper proposes a Multi-Attack Intrusion Detection System(MAIDS)for Software-Defined IoT Networks(SDN-IoT).The proposed scheme uses two machine-learning algorithms to improve detection efficiency and provide a mechanism to prevent false alarms.First,a comparative analysis of the most commonly used machine-learning algorithms to secure the SDN was performed on two datasets:the Network Security Laboratory Knowledge Discovery in Databases(NSL-KDD)and the Canadian Institute for Cyberse-curity Intrusion Detection Systems(CICIDS2017),to select the most suitable algorithms for the proposed scheme and for securing SDN-IoT systems.The algorithms evaluated include Extreme Gradient Boosting(XGBoost),K-Nearest Neighbor(KNN),Random Forest(RF),Support Vector Machine(SVM),and Logistic Regression(LR).Second,an algorithm for selecting the best dataset for machine learning in Intrusion Detection Systems(IDS)was developed to enable effective comparison between the datasets used in the development of the security scheme.The results showed that XGBoost and RF are the best algorithms to ensure the security of SDN-IoT and to be applied in the proposed security system,with average accuracies of 99.88%and 99.89%,respectively.Furthermore,the proposed security scheme reduced the false alarm rate by 33.23%,which is a significant improvement over prevalent schemes.Finally,tests of the algorithm for dataset selection showed that the rates of false positives and false negatives were reduced when the XGBoost and RF algorithms were trained on the CICIDS2017 dataset,making it the best for IDS compared to the NSL-KDD dataset.
文摘Collaboration in wireless sensor systems must be fault-tolerant due to the harsh environmental conditions at which such systems can be deployed. This paper focuses on finding the signal processing algorithms for collaborative target detection based on the generalized approach to signal processing (GASP) in the presence of noise. The signal processing algorithms are efficient in terms of communication cost, precision, accuracy, and number of faulty sensors tolerable in the wireless sensor systems. Two types of generalized signal processing algorithms, namely, value fusion and decision fusion constructed according to GASP in the presence of noise, are identified first. When comparing their performance and communication overhead, the decision fusion algorithm is found to become superior to the value fusion algorithm as the ratio of faulty sensors to fault free sensors increases. The use of GASP under designing the value and decision fusion algorithms in wireless sensor systems allows us to obtain the same performance, but at low values of signal energy, as well as under employment of the universally adopted signal processing algorithms widely used in practice.
基金The National Natural Science Foundation of China(No.61271204)the National Key Technology R&D Program during the 12th Five-Year Plan Period(No.2012BAH15B00)
文摘Unlike the existing resonance region radar systems (RRRS ) that transmit the orthogonal frequency division multiplexing (OFDM)multi-carrier waveform,the dense multi-carrier (DMC)radar waveform which has a narrower frequency interval than the traditional OFDM waveform is proposed.Therefore,in the same frequency bandwidth,the DMC waveform contains more sub-carriers and provides more frequency diversity.Additionally,to further improve detection performance,a novel optimal weight accumulation target detection (OWATD)method is proposed,where the echo electromagnetic waves at different frequencies are accumulated with the optimal weight coefficients.Then,with the signal-to-noise ratio (SNR)of echo waveform approaching infinity,the asymptotic detection performance is analyzed, and the condition that the OWATD method with the DMC outperforms the matched filter with the OFDM is presented.Simulation results show that the DMC outperforms the OFDM in the target detection performance,and the OWATD method can further improve the detection performance of the traditional methods with both the OFDM and DMC radar waveform.
基金supported by the National Natural Science Foundation of China (40871157 41171317)the Foundation of Advance Research of Science and Technology for Chinese National Defence(9140C620201902)
文摘A new constant false alarm rate (CFAR) target detector for synthetic aperture radar (SAR) images is developed. For each pixel under test, both the local probability density function (PDF) of the pixel and the clutter PDF in the reference window are estimated by the non-parametric density estimation. The target detector is defined as the mean square error (MSE) distance between the two PDFs. The CFAR detection in SAR images having multiplicative noise is achieved by adaptive kernel bandwidth proportional to the clutter level. In addition, for obtaining a threshold with respect to a given probability of false alarm (PFA), an unsupervised null distribution fitting method with outlier rejection is proposed. The effectiveness of the proposed target detector is demonstrated by the experiment result using the RADATSAT-2 SAR image.
文摘The monitoring system of ship cabin based on single chip computer is introduced. The system can inspect the signal circulatively coming from sensors of all kinds, and give alarm when limit is broken. It demonstrated the working principles, hardware block diagram and software flow diagram of the system.
基金Sponsored by the National Natural Science Foundation of China(Grant Nos.61622107 and 61471149)
文摘A novel algorithm for the detection of ship target with high accuracy in the synthetic aperture radar(SAR) with high spatial resolution image is proposed. The SAR image may include not only the ship targets but also the interferences such as the sea clutter,the strong reflection target,the sidelobe and so on.The conventional constant false alarm rate(CFAR) algorithm has some disadvantages,and it has not enough prior information about the size of the ships. Hence,it cannot separate the adjacent ships correctly. A comprehensive algorithm based on the modified CFAR algorithm and opening operation is presented to solve the problem,and the detection accuracy can be improved consequently. The results of SAR image illustrate the effectiveness of the method in this paper.
文摘he cell averaging and the order statistics are two typical algorithms for constant false alarm rate detector in radar system. They have different advantages in stationary noise background and fluctuation clutter environment respectively. This paper presents a doublethreshold constant false alarm rate detector constructed on the basis of synthesizing the advantages of the two algorithms above and avioding their disadvantages. The performance of the detector is analyzed, and the simulation result is given.
文摘A most promising solution to the expansion of spectrum efficiency is cognitive radio(CR)and this expansion is achieved by permitting the licensed frequency bands to be accessed by unlicensed secondary users(SUs)with a lack of interference with licensed primary users(PUs).This utilization of CR networks in the spectrum sensing causes vulnerable attacks like primary user emulation(PUE)attack and here PUs play the role of malicious user and do not permit other users to utilize PUs channel even in their unavailability.On the basis of the traditional single-threshold energy detection algorithm,a novel modified double-threshold energy detector is formulated in the CR network and the detection probability,miss detection probability,probability of false alarm,and their inter-relationship are analyzed.This paper develops a modified double threshold energy detection cooperative spectrum sensing technique to alleviate the PUE attack.Finally,performance-based evaluation is carried out between the proposed and the existing energy detection spectrum sensing method that had no consideration on PUE attack.The resultant of the simulation in MATLAB has revealed that the proposed model has significantly mitigated PUE attack by means of providing outstanding performance.
文摘This paper addresses the problem of joint optimization of subchannel selection and spectrum sensing time for multiband cognitive radio networks under the sensing capability constrains. In particular, we construct a multiband spectrum sensing framework, and derive the probabilities of detection and false alarm taking the different subchannel gain into account. Furthermore, we formulate the multi- band sensing as a two-parameter optimization prob- lem under the sensing capability constrains and guaranteeing the QoS of the secondary user. Moreover, we develop a semi-analytical optimization scheme to achieve the optimal solution.
文摘In this paper,we propose a sensing scheme based on energy detection,matched filter and cyclic prefix.Both Equal Gain Combining(EGC)and optimal combination of the aforementioned detectors are investigated in cooperative and non-cooperative spectrum sensing scenarios.In packet transmission systems such as OFDM(Orthogonal Frequency Division Multiple access)systems,the proposed scheme takes advantage of utilizing more samples than individual detectors,i.e.,cyclic prefix,training or pilot samples,and data payload samples.The proposed combine-sensing scheme offers higher detection probability and lower false alarm probability,as compared with the performance of individual detectors over the same frame duration.Simulation results are congruent with the theoretical curves and confirm the validity of our derivations.
基金Supported by the National Natural Science Foundation of China(No.60072027)
文摘With the conditions of small data size and low Signal-to-Noise Ratio (SNR), the application of Higher Order Statistics (HOS) is restrained not only by its high estimation variance,but also by its low estimation precision. Therefore, a modified HOS based Time Delay Estimation (TDE) algorithm is proposed to overcome these problems. Comparing with the conventional TDE algorithms, the estimation variance is improved greatly. A typical simulation example is completed in order to test the performance of the algorithm proposed, which shows that the proposed algorithm has advantages over the traditional ones in both detection performance and computation efficiency.