A compliant F/T sensor which combines passive compliance and active sensing is proposed in thes paper to provide flexible utility. The paper describes the sensor’s mechanical design, measuring theory and kinematic eq...A compliant F/T sensor which combines passive compliance and active sensing is proposed in thes paper to provide flexible utility. The paper describes the sensor’s mechanical design, measuring theory and kinematic equations which are set up in the RPY (roll-pitch-yaw) mode.The sensor’S poSe vector can be acquired if the position signals from the PSDS are known, and vice versa. The formula between force vector and pose vector is built so that the force/ torque can be acquired after the stiffness matrix is calibrated.展开更多
The security of civil engineering is an important task due to the economic, social and environmental significance. Compared with conventional sensors, the optical fiber sensors have their unique characteristics.Being ...The security of civil engineering is an important task due to the economic, social and environmental significance. Compared with conventional sensors, the optical fiber sensors have their unique characteristics.Being durable, stable and insensitive to external perturbations,they are particular interesting for the long-term monitoring of civil structures.Focus is on absolute measurement optical fiber sensors, which are emerging from the monitoring large structural, including SOFO system, F-P optical fiber sensors, and fiber Bragg grating sensors. The principle, characteristic and application of these three kinds of optical fiber sensors are described together with their future prospects.展开更多
Mitochondrial dysfunction is a significant pathological alte ration that occurs in Parkinson's disease(PD),and the Thr61lle(T61I)mutation in coiled-coil helix coiled-coil helix domain containing 2(CHCHD2),a crucia...Mitochondrial dysfunction is a significant pathological alte ration that occurs in Parkinson's disease(PD),and the Thr61lle(T61I)mutation in coiled-coil helix coiled-coil helix domain containing 2(CHCHD2),a crucial mitochondrial protein,has been reported to cause Parkinson's disease.FIFO-ATPase participates in the synthesis of cellular adenosine triphosphate(ATP)and plays a central role in mitochondrial energy metabolism.However,the specific roles of wild-type(WT)CHCHD2 and T611-mutant CHCHD2 in regulating F1FO-ATPase activity in Parkinson's disease,as well as whether CHCHD2 or CHCHD2 T61I affects mitochondrial function through regulating F1FO-ATPase activity,remain unclea r.Therefore,in this study,we expressed WT CHCHD2 and T61l-mutant CHCHD2 in an MPP^(+)-induced SH-SY5Y cell model of PD.We found that CHCHD2 protected mitochondria from developing MPP^(+)-induced dysfunction.Under normal conditions,ove rexpression of WT CHCHD2 promoted F1FO-ATPase assembly,while T61I-mutant CHCHD2 appeared to have lost the ability to regulate F1FO-ATPase assembly.In addition,mass spectrometry and immunoprecipitation showed that there was an interaction between CHCHD2 and F1FO-ATPase.Three weeks after transfection with AAV-CHCHD2 T61I,we intraperitoneally injected 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine into mice to establish an animal model of chronic Parkinson's disease and found that exogenous expression of the mutant protein worsened the behavioral deficits and dopaminergic neurodegeneration seen in this model.These findings suggest that WT CHCHD2 can alleviate mitochondrial dysfunction in PD by maintaining F1F0-ATPase structure and function.展开更多
This study aims to discuss anisotropic solutions that are spherically symmetric in the quintessence field,which describe compact stellar objects in the modified Rastall teleparallel theory of gravity.To achieve this g...This study aims to discuss anisotropic solutions that are spherically symmetric in the quintessence field,which describe compact stellar objects in the modified Rastall teleparallel theory of gravity.To achieve this goal,the Krori and Barua arrangement for spherically symmetric components of the line element is incorporated.We explore the field equations by selecting appropriate off-diagonal tetrad fields.Born-Infeld function of torsion f(T)=β√λT+1-1 and power law form h(T)=δTn are used.The Born-Infeld gravity was the first modified teleparallel gravity to discuss inflation.We use the linear equation of state pr=ξρto separate the quintessence density.After obtaining the field equations,we investigate different physical parameters that demonstrate the stability and physical acceptability of the stellar models.We use observational data,such as the mass and radius of the compact star candidates PSRJ 1416-2230,Cen X-3,&4U 1820-30,to ensure the physical plausibility of our findings.展开更多
Volatile organic compounds(VOC)gas detection devices based on semiconductor sensors have become a common method due to their low cost,simple principle,and small size.However,with the continuous development of material...Volatile organic compounds(VOC)gas detection devices based on semiconductor sensors have become a common method due to their low cost,simple principle,and small size.However,with the continuous development of materials science,various new materials have been applied in the fabrication of gas sensors,but these new materials have more stringent requirements for operating temperature,which cannot be met by existing sensor modules on the market.Therefore,this paper proposes a temperature-adjustable sensor module and designs an environmental monitoring system based on the STM32F103RET6 microprocessor.This system primarily utilizes multiple semiconductor gas sensors to monitor and record the concentrations of various harmful gases in different environments.It can also monitor real-time temperature,humidity,and latitude and longitude in the current environment,and upload the data to the Internet of Things via 4G communication.This system has the advantages of small size,portability,and low cost.Experimental results show that the sensor module can achieve precise control of operating temperature to a certain extent,with an average temperature error of approximately 3%.The monitoring system demonstrates a certain level of accuracy in detecting target gases and can promptly upload the data to a cloud platform for storage and processing.A comparison with professional testing equipment shows that the sensitivity curves of each sensor exhibit similarity.This study provides engineering and technical references for the application of VOC gas sensors.展开更多
A kind of wireless sensor was previously developed,which is powered and transmit signals wirelessly instead of using an electrical connection to the embedded reinforcement.Based on this technique,the relationship betw...A kind of wireless sensor was previously developed,which is powered and transmit signals wirelessly instead of using an electrical connection to the embedded reinforcement.Based on this technique,the relationship between diameters of corroded sensing steel wires and corrosion levels of steel bars is established by experiments.Quadratic function is utilized to fit the experiment results,and the correlation coefficients are all larger than 0.95.Estimated corrosion levels of commonly used steel bars are given for different diameters of corroded sensing steel wires fractured due to corrosion.展开更多
This paper presents a proposed low-noise and high-sensitivity Internet of Thing(IoT)system based on an M&NEMS microphone.The IoT device consists of an M&NEMS resistive accelerometer associated with an electron...This paper presents a proposed low-noise and high-sensitivity Internet of Thing(IoT)system based on an M&NEMS microphone.The IoT device consists of an M&NEMS resistive accelerometer associated with an electronic readout circuit,which is a silicon nanowire and a Continuous-Time(CT)△∑ADC.The first integrator of the△∑ADC is based on a positive feedback DC-gain enhancement two-stage amplifier due to its high linearity and low-noise operations.To mitigate both the offset and 1/f noise,a suggested delay-time chopper negative-R stabilization technique is applied around the first integrator.A 65-nm CMOS process implements the CT△∑ADC.The supply voltage of the CMOS circuit is 1.2-V while 0.96-mW is the power consumption and 0.1-mm^(2) is the silicon area.The M&NEMS microphone and△∑ADC complete circuit are fabricated and measured.Over a working frequency bandwidth of 20-kHz,the measurement results of the proposed IoT system reach a signal to noise ratio(SNR)of 102.8-dB.Moreover,it has a measured dynamic range(DR)of 108-dB and a measured signal to noise and distortion ratio(SNDR)of 101.3-dB.展开更多
An integrated front-end vertical CMOS Hall magnetic sensor is proposed for the in-plane magnetic field measure-ment.To improve the magnetic sensitivity and to obtain low offset,a fully symmetric vertical Hall device(F...An integrated front-end vertical CMOS Hall magnetic sensor is proposed for the in-plane magnetic field measure-ment.To improve the magnetic sensitivity and to obtain low offset,a fully symmetric vertical Hall device(FSVHD)has been op-timized with a minimum size design.A new four-phase spinning current modulation associated with a correlated double sampling(CDS)demodulation technique has been further applied to compensate for the offset and also to provide a linear Hall output voltage.The vertical Hall sensor chip has been manufactured in a 0.18μm low-voltage CMOS technology and it occu-pies an area of 1.54 mm2.The experimental results show in the magnetic field range from-200 to 200 mT,the entire vertical Hall sensor performs with the linearity of 99.9%and the system magnetic sensitivity of 1.22 V/T and the residual offset of 60μT.Meanwhile,it consumes 4.5 mW at a 3.3 V supply voltage.The proposed vertical Hall sensor is very suitable for the low-cost sys-tem-on-chip(SOC)implementation of 2D or 3D magnetic microsystems.展开更多
In order to overcome the deficiencies of traditional pressure sensors, a kind of intelligent pressure sensors with temperature correction is designed. Qccording to the intelligent sensor system of composition and rang...In order to overcome the deficiencies of traditional pressure sensors, a kind of intelligent pressure sensors with temperature correction is designed. Qccording to the intelligent sensor system of composition and range of applications, with fully taking into account the parameters of the connection between of co-ordination, we chose a good usability, high reliability and low cost components composed of the entire measurement system, with controlling and dealing with in 80C51 miller, the system had the temperature and pressure parameters with automatic measurement, amplification, A/D conversion, the weak signal locked amplification, as well as PhaseSensitive Detection (PSD), common-mode signal rejection, the collected signal de-noising processing, cross-sensitivity of the decoupling and show the results. It also has a self-test, automatic temperature condition and on, site communications and other functions.展开更多
In this paper, the reflective spectra of a refraction index sensor were analyzed based on fiber grating F-P cavity. The sensor was constituted by two identical fiber gratings. Compared with the refraction index sensor...In this paper, the reflective spectra of a refraction index sensor were analyzed based on fiber grating F-P cavity. The sensor was constituted by two identical fiber gratings. Compared with the refraction index sensor using one fiber grating, the fiber grating F-P cavity sensor has narrower resonant peak and it can be used for more accurate measurement. The resonant peaks in the reflective spectra of the sensor are changed with small changes of the refraction index of the measured chemical liquids or cell samples. So it has potential applications in biology and chemistry.展开更多
文摘A compliant F/T sensor which combines passive compliance and active sensing is proposed in thes paper to provide flexible utility. The paper describes the sensor’s mechanical design, measuring theory and kinematic equations which are set up in the RPY (roll-pitch-yaw) mode.The sensor’S poSe vector can be acquired if the position signals from the PSDS are known, and vice versa. The formula between force vector and pose vector is built so that the force/ torque can be acquired after the stiffness matrix is calibrated.
文摘The security of civil engineering is an important task due to the economic, social and environmental significance. Compared with conventional sensors, the optical fiber sensors have their unique characteristics.Being durable, stable and insensitive to external perturbations,they are particular interesting for the long-term monitoring of civil structures.Focus is on absolute measurement optical fiber sensors, which are emerging from the monitoring large structural, including SOFO system, F-P optical fiber sensors, and fiber Bragg grating sensors. The principle, characteristic and application of these three kinds of optical fiber sensors are described together with their future prospects.
基金supported by the National Natural Science Foundation of China(Youth Program),No.81901282(to XC)the National Natural Science Foundation of China,Nos.81401416(to PX),81870992(to PX),81870856(to XC and MZ)+3 种基金Guangdong Basic and Applied Basic Research Foundation the Science Foundation,No.2019A1515011189(to XC)Central Government Guiding Local Science and Technology Development Projects,No.ZYYD2022C17(to PX)Key Project of Guangzhou Health Commission,No.2019-ZD-09(to PX)Science and Technology Planning Project of Guangzhou,Nos.202102020029(to XC),202102010010(to PX)。
文摘Mitochondrial dysfunction is a significant pathological alte ration that occurs in Parkinson's disease(PD),and the Thr61lle(T61I)mutation in coiled-coil helix coiled-coil helix domain containing 2(CHCHD2),a crucial mitochondrial protein,has been reported to cause Parkinson's disease.FIFO-ATPase participates in the synthesis of cellular adenosine triphosphate(ATP)and plays a central role in mitochondrial energy metabolism.However,the specific roles of wild-type(WT)CHCHD2 and T611-mutant CHCHD2 in regulating F1FO-ATPase activity in Parkinson's disease,as well as whether CHCHD2 or CHCHD2 T61I affects mitochondrial function through regulating F1FO-ATPase activity,remain unclea r.Therefore,in this study,we expressed WT CHCHD2 and T61l-mutant CHCHD2 in an MPP^(+)-induced SH-SY5Y cell model of PD.We found that CHCHD2 protected mitochondria from developing MPP^(+)-induced dysfunction.Under normal conditions,ove rexpression of WT CHCHD2 promoted F1FO-ATPase assembly,while T61I-mutant CHCHD2 appeared to have lost the ability to regulate F1FO-ATPase assembly.In addition,mass spectrometry and immunoprecipitation showed that there was an interaction between CHCHD2 and F1FO-ATPase.Three weeks after transfection with AAV-CHCHD2 T61I,we intraperitoneally injected 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine into mice to establish an animal model of chronic Parkinson's disease and found that exogenous expression of the mutant protein worsened the behavioral deficits and dopaminergic neurodegeneration seen in this model.These findings suggest that WT CHCHD2 can alleviate mitochondrial dysfunction in PD by maintaining F1F0-ATPase structure and function.
基金funded by the National Natural Science Foundation of China (Grant No. 11975145)
文摘This study aims to discuss anisotropic solutions that are spherically symmetric in the quintessence field,which describe compact stellar objects in the modified Rastall teleparallel theory of gravity.To achieve this goal,the Krori and Barua arrangement for spherically symmetric components of the line element is incorporated.We explore the field equations by selecting appropriate off-diagonal tetrad fields.Born-Infeld function of torsion f(T)=β√λT+1-1 and power law form h(T)=δTn are used.The Born-Infeld gravity was the first modified teleparallel gravity to discuss inflation.We use the linear equation of state pr=ξρto separate the quintessence density.After obtaining the field equations,we investigate different physical parameters that demonstrate the stability and physical acceptability of the stellar models.We use observational data,such as the mass and radius of the compact star candidates PSRJ 1416-2230,Cen X-3,&4U 1820-30,to ensure the physical plausibility of our findings.
文摘Volatile organic compounds(VOC)gas detection devices based on semiconductor sensors have become a common method due to their low cost,simple principle,and small size.However,with the continuous development of materials science,various new materials have been applied in the fabrication of gas sensors,but these new materials have more stringent requirements for operating temperature,which cannot be met by existing sensor modules on the market.Therefore,this paper proposes a temperature-adjustable sensor module and designs an environmental monitoring system based on the STM32F103RET6 microprocessor.This system primarily utilizes multiple semiconductor gas sensors to monitor and record the concentrations of various harmful gases in different environments.It can also monitor real-time temperature,humidity,and latitude and longitude in the current environment,and upload the data to the Internet of Things via 4G communication.This system has the advantages of small size,portability,and low cost.Experimental results show that the sensor module can achieve precise control of operating temperature to a certain extent,with an average temperature error of approximately 3%.The monitoring system demonstrates a certain level of accuracy in detecting target gases and can promptly upload the data to a cloud platform for storage and processing.A comparison with professional testing equipment shows that the sensitivity curves of each sensor exhibit similarity.This study provides engineering and technical references for the application of VOC gas sensors.
基金supported by the National Natural Science Foundation of China(No.51279074)
文摘A kind of wireless sensor was previously developed,which is powered and transmit signals wirelessly instead of using an electrical connection to the embedded reinforcement.Based on this technique,the relationship between diameters of corroded sensing steel wires and corrosion levels of steel bars is established by experiments.Quadratic function is utilized to fit the experiment results,and the correlation coefficients are all larger than 0.95.Estimated corrosion levels of commonly used steel bars are given for different diameters of corroded sensing steel wires fractured due to corrosion.
文摘This paper presents a proposed low-noise and high-sensitivity Internet of Thing(IoT)system based on an M&NEMS microphone.The IoT device consists of an M&NEMS resistive accelerometer associated with an electronic readout circuit,which is a silicon nanowire and a Continuous-Time(CT)△∑ADC.The first integrator of the△∑ADC is based on a positive feedback DC-gain enhancement two-stage amplifier due to its high linearity and low-noise operations.To mitigate both the offset and 1/f noise,a suggested delay-time chopper negative-R stabilization technique is applied around the first integrator.A 65-nm CMOS process implements the CT△∑ADC.The supply voltage of the CMOS circuit is 1.2-V while 0.96-mW is the power consumption and 0.1-mm^(2) is the silicon area.The M&NEMS microphone and△∑ADC complete circuit are fabricated and measured.Over a working frequency bandwidth of 20-kHz,the measurement results of the proposed IoT system reach a signal to noise ratio(SNR)of 102.8-dB.Moreover,it has a measured dynamic range(DR)of 108-dB and a measured signal to noise and distortion ratio(SNDR)of 101.3-dB.
基金the National Natural Science Foundation of China(Nos.61871231,62171233)the Natural Science Foundation of Jiangsu Province,China(No.BK20181390)+1 种基金the Key Research&Development Plan of Jiangsu Province,China(No.BE2019741)the Agricultural Science and Technology Independent Innovation Foundation of Jiangsu Province,China(No.CX(21)3062).
文摘An integrated front-end vertical CMOS Hall magnetic sensor is proposed for the in-plane magnetic field measure-ment.To improve the magnetic sensitivity and to obtain low offset,a fully symmetric vertical Hall device(FSVHD)has been op-timized with a minimum size design.A new four-phase spinning current modulation associated with a correlated double sampling(CDS)demodulation technique has been further applied to compensate for the offset and also to provide a linear Hall output voltage.The vertical Hall sensor chip has been manufactured in a 0.18μm low-voltage CMOS technology and it occu-pies an area of 1.54 mm2.The experimental results show in the magnetic field range from-200 to 200 mT,the entire vertical Hall sensor performs with the linearity of 99.9%and the system magnetic sensitivity of 1.22 V/T and the residual offset of 60μT.Meanwhile,it consumes 4.5 mW at a 3.3 V supply voltage.The proposed vertical Hall sensor is very suitable for the low-cost sys-tem-on-chip(SOC)implementation of 2D or 3D magnetic microsystems.
文摘In order to overcome the deficiencies of traditional pressure sensors, a kind of intelligent pressure sensors with temperature correction is designed. Qccording to the intelligent sensor system of composition and range of applications, with fully taking into account the parameters of the connection between of co-ordination, we chose a good usability, high reliability and low cost components composed of the entire measurement system, with controlling and dealing with in 80C51 miller, the system had the temperature and pressure parameters with automatic measurement, amplification, A/D conversion, the weak signal locked amplification, as well as PhaseSensitive Detection (PSD), common-mode signal rejection, the collected signal de-noising processing, cross-sensitivity of the decoupling and show the results. It also has a self-test, automatic temperature condition and on, site communications and other functions.
基金National Natural Science Foundation of China(10774058)
文摘In this paper, the reflective spectra of a refraction index sensor were analyzed based on fiber grating F-P cavity. The sensor was constituted by two identical fiber gratings. Compared with the refraction index sensor using one fiber grating, the fiber grating F-P cavity sensor has narrower resonant peak and it can be used for more accurate measurement. The resonant peaks in the reflective spectra of the sensor are changed with small changes of the refraction index of the measured chemical liquids or cell samples. So it has potential applications in biology and chemistry.