In this paper, some results concerning the relationship between the bounded-ness of some spheres and the local boundedness of the .F*-space are presented. Moreover, some results about the compactness are also given.
In this paper, we study some new systems of generalized quasi-variational inclusion problems in FC-spaces without convexity structure.By applying an existence theorem of maximal elements of set-valued mappings due to ...In this paper, we study some new systems of generalized quasi-variational inclusion problems in FC-spaces without convexity structure.By applying an existence theorem of maximal elements of set-valued mappings due to the author, some new existence theorems of solutions for the systems of generalized quasi-variational inclusion problems are proved in noncompact FC-spaces. As applications, some existence results of solutions for the system of quasi-optimization problems and mathematical programs with the systems of generalized quasi-variational inclusion constraints are obtained in FC-spaces.展开更多
LetΩ be a bounded symmetric domain in Cn. The purpose of this article is to define and characterize the general function space F(p, q, s) on Ω. Characterizing functions in the F(p, q, s) space is a work of consi...LetΩ be a bounded symmetric domain in Cn. The purpose of this article is to define and characterize the general function space F(p, q, s) on Ω. Characterizing functions in the F(p, q, s) space is a work of considerable interest nowadays. In this article, the authors give several equivalent descriptions of the functions in the F(p, q, s) space on Ω in terms of fractional differential operators. At the same time, the authors give the relationship between F(p, q, s) space and Bloch type space on Ω too.展开更多
In this article, the authors give a typical integral's bidirectional estimates for allcases. At the same time, several equivalent characterizations on the F(p, q, s, k) space in theunit ball of Cn are given.
This paper deals with the boundedness and compactness of the compositionintegral type operators T g, from F (p, q, s) spaces to(little) Bloch-type spaces in the unit ball of C n , where Tg,φf(z) =∫01fφ(tz)Rg(tz)(dt...This paper deals with the boundedness and compactness of the compositionintegral type operators T g, from F (p, q, s) spaces to(little) Bloch-type spaces in the unit ball of C n , where Tg,φf(z) =∫01fφ(tz)Rg(tz)(dt)/t , z ∈ B, g ∈ H(B) and φ∈H(B, B).展开更多
This paper is devoted to characterizing the Riemann-Stieltjes operators and pointwise multipliers on F(p, q, s) spaces in the unit ball of C^n which contain many classical function spaces, such as the Bloch space, B...This paper is devoted to characterizing the Riemann-Stieltjes operators and pointwise multipliers on F(p, q, s) spaces in the unit ball of C^n which contain many classical function spaces, such as the Bloch space, BMOA and Q8 spaces. The boundedness and compactness of these operators on F(p, q, s) spaces are characterized by means of an embedding theorem, i.e., F(p,q, s) spaces boundedly embedded into the tent-type spaces Tp,s^∞(μ)展开更多
This paper deals with the boundedness and compactness of the weighted composition operators from the F(p, q, s) spaces, including Hardy space, Bergman space, Qp space, BMOA space, Besov space and α-Bloch space, to ...This paper deals with the boundedness and compactness of the weighted composition operators from the F(p, q, s) spaces, including Hardy space, Bergman space, Qp space, BMOA space, Besov space and α-Bloch space, to Bers-type spaces Hv^∞( or little Bers-type spaces Hv,o∞ ), where v is normal.展开更多
In this paper, necessary and sufficient conditions for a closed range composition operator CФ on the general family of holomorphic function spaces F(p,q,s) and more generally on α-Besov type spaces F(p,αp-2,s) ...In this paper, necessary and sufficient conditions for a closed range composition operator CФ on the general family of holomorphic function spaces F(p,q,s) and more generally on α-Besov type spaces F(p,αp-2,s) are given. We give a Carleson measure characterization on F (p, αp - 2, s) spaces, then we indicate how Carleson measures can be used to characterize boundedness and compactness of CФ on F(p,q,s) and F(p,αp- 2,s) spaces.展开更多
A class of generalized vector variational-type inequality problems (GVVTIP) are studied in FC-spaces, which includes the most of vector equilibrium problems, vector variational inequality problems, generalized vecto...A class of generalized vector variational-type inequality problems (GVVTIP) are studied in FC-spaces, which includes the most of vector equilibrium problems, vector variational inequality problems, generalized vector equilibrium problems and general- ized vector variational inequality problem as special cases. By using F-KKM theorem, some new existence results for GVVTIP axe established in noncompact FC-space. As consequences, some recent known results in literature are obtained under much weaker assumption.展开更多
The space of internal geometry of a model of a real crystal is supposed to be finite, closed, and with a constant Gaussian curvature equal to unity, permitting the realization of lattice systems in accordance with Fed...The space of internal geometry of a model of a real crystal is supposed to be finite, closed, and with a constant Gaussian curvature equal to unity, permitting the realization of lattice systems in accordance with Fedorov groups of transformations. For visualizing computations, the interpretation of geometrical objects on a Clifford surface (SK) in Riemannian geometry with the help of a 2D torus in a Euclidean space is used. The F-algorithm ensures a computation of 2D sections of models of point systems arranged perpendicularly to the symmetry axes l3, l4, and l6. The results of modeling can be used for calculations of geometrical sizes of crystal structures, nanostructures, parameters of the cluster organization of oxides, as well as for the development of practical applications connected with improving the structural characteristics of crystalline materials.展开更多
The purpose of this paper is to construct near-vector spaces using a result by Van der Walt, with Z<sub>p</sub> for p a prime, as the underlying near-field. There are two notions of near-vector spaces, we ...The purpose of this paper is to construct near-vector spaces using a result by Van der Walt, with Z<sub>p</sub> for p a prime, as the underlying near-field. There are two notions of near-vector spaces, we focus on those studied by André [1]. These near-vector spaces have recently proven to be very useful in finite linear games. We will discuss the construction and properties, give examples of these near-vector spaces and give its application in finite linear games.展开更多
基金This research is supported by National Natural Science Foundation of China(19971046) RFDP(2001005513)
文摘In this paper, some results concerning the relationship between the bounded-ness of some spheres and the local boundedness of the .F*-space are presented. Moreover, some results about the compactness are also given.
基金supported by the Scientific Research Fun of Sichuan Normal University(09ZDL04)the Sichuan Province Leading Academic Discipline Project(SZD0406)
文摘In this paper, we study some new systems of generalized quasi-variational inclusion problems in FC-spaces without convexity structure.By applying an existence theorem of maximal elements of set-valued mappings due to the author, some new existence theorems of solutions for the systems of generalized quasi-variational inclusion problems are proved in noncompact FC-spaces. As applications, some existence results of solutions for the system of quasi-optimization problems and mathematical programs with the systems of generalized quasi-variational inclusion constraints are obtained in FC-spaces.
基金supported by the National Natural Science Foundation of China(11571104)the Hunan Provincial Innovation Foundation for Postgraduate(CX2017B220)Supported by the Construct Program of the Key Discipline in Hunan Province
文摘LetΩ be a bounded symmetric domain in Cn. The purpose of this article is to define and characterize the general function space F(p, q, s) on Ω. Characterizing functions in the F(p, q, s) space is a work of considerable interest nowadays. In this article, the authors give several equivalent descriptions of the functions in the F(p, q, s) space on Ω in terms of fractional differential operators. At the same time, the authors give the relationship between F(p, q, s) space and Bloch type space on Ω too.
基金supported by the National Natural Science Foundation of China(11571104)the Hunan Provincial Innovation Foundation for Postgraduate(CX2017B220)Supported by the Construct Program of the Key Discipline in Hunan Province
文摘In this article, the authors give a typical integral's bidirectional estimates for allcases. At the same time, several equivalent characterizations on the F(p, q, s, k) space in theunit ball of Cn are given.
基金Supported by the NNSF of China(10771064, 11101139)Supported by the NSF of Zhejiang Province(Y7080197, Y6090036, Y6100219)Supported by the Foundation of Creative Group in Colleges and Universities of Zhejiang Province(T200924)
文摘This paper deals with the boundedness and compactness of the compositionintegral type operators T g, from F (p, q, s) spaces to(little) Bloch-type spaces in the unit ball of C n , where Tg,φf(z) =∫01fφ(tz)Rg(tz)(dt)/t , z ∈ B, g ∈ H(B) and φ∈H(B, B).
基金Supported in part by the National Natural Science Foundation of China(11271359)the Fundamental Research Funds for the Central Universities(2014-Ia-037and 2015-IVA-069)
文摘This paper is devoted to characterizing the Riemann-Stieltjes operators and pointwise multipliers on F(p, q, s) spaces in the unit ball of C^n which contain many classical function spaces, such as the Bloch space, BMOA and Q8 spaces. The boundedness and compactness of these operators on F(p, q, s) spaces are characterized by means of an embedding theorem, i.e., F(p,q, s) spaces boundedly embedded into the tent-type spaces Tp,s^∞(μ)
基金Supported by the National Natural Science Foundation of China (10771064)the Natural Science Foundation of Zhejiang province (Y6090036+1 种基金Y7080197,Y606197)the Foundation of Department of Education of Zhejiang Province (20070482)
文摘This paper deals with the boundedness and compactness of the weighted composition operators from the F(p, q, s) spaces, including Hardy space, Bergman space, Qp space, BMOA space, Besov space and α-Bloch space, to Bers-type spaces Hv^∞( or little Bers-type spaces Hv,o∞ ), where v is normal.
文摘In this paper, necessary and sufficient conditions for a closed range composition operator CФ on the general family of holomorphic function spaces F(p,q,s) and more generally on α-Besov type spaces F(p,αp-2,s) are given. We give a Carleson measure characterization on F (p, αp - 2, s) spaces, then we indicate how Carleson measures can be used to characterize boundedness and compactness of CФ on F(p,q,s) and F(p,αp- 2,s) spaces.
基金Project supported by the Natural Science Foundation of Sichuan Education Department of China(No.2003A081)
文摘A class of generalized vector variational-type inequality problems (GVVTIP) are studied in FC-spaces, which includes the most of vector equilibrium problems, vector variational inequality problems, generalized vector equilibrium problems and general- ized vector variational inequality problem as special cases. By using F-KKM theorem, some new existence results for GVVTIP axe established in noncompact FC-space. As consequences, some recent known results in literature are obtained under much weaker assumption.
文摘The space of internal geometry of a model of a real crystal is supposed to be finite, closed, and with a constant Gaussian curvature equal to unity, permitting the realization of lattice systems in accordance with Fedorov groups of transformations. For visualizing computations, the interpretation of geometrical objects on a Clifford surface (SK) in Riemannian geometry with the help of a 2D torus in a Euclidean space is used. The F-algorithm ensures a computation of 2D sections of models of point systems arranged perpendicularly to the symmetry axes l3, l4, and l6. The results of modeling can be used for calculations of geometrical sizes of crystal structures, nanostructures, parameters of the cluster organization of oxides, as well as for the development of practical applications connected with improving the structural characteristics of crystalline materials.
文摘The purpose of this paper is to construct near-vector spaces using a result by Van der Walt, with Z<sub>p</sub> for p a prime, as the underlying near-field. There are two notions of near-vector spaces, we focus on those studied by André [1]. These near-vector spaces have recently proven to be very useful in finite linear games. We will discuss the construction and properties, give examples of these near-vector spaces and give its application in finite linear games.