Let F be a field of characteristic not 2, and let A be a finite-dimensional semisimple F -algebra. All local automorphisms of A are characterized when all the degrees of A are larger than 1. If F is further assumed to...Let F be a field of characteristic not 2, and let A be a finite-dimensional semisimple F -algebra. All local automorphisms of A are characterized when all the degrees of A are larger than 1. If F is further assumed to be an algebraically closed field of characteristic zero, K a finite group, F K the group algebra of K over F , then all local automorphisms of F K are also characterized.展开更多
基金Supported by the Fundamental Research Funds for the Central Universities
文摘Let F be a field of characteristic not 2, and let A be a finite-dimensional semisimple F -algebra. All local automorphisms of A are characterized when all the degrees of A are larger than 1. If F is further assumed to be an algebraically closed field of characteristic zero, K a finite group, F K the group algebra of K over F , then all local automorphisms of F K are also characterized.