期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
最大距离法选取初始簇中心的K-means文本聚类算法的研究 被引量:108
1
作者 翟东海 鱼江 +2 位作者 高飞 于磊 丁锋 《计算机应用研究》 CSCD 北大核心 2014年第3期713-715,719,共4页
由于初始簇中心的随机选择,K-means算法在聚类时容易出现聚类结果局部最优、聚类结果不稳定、总迭代次数较多等问题。为了解决K-means算法所存在的以上问题,提出了最大距离法选取初始簇中心的Kmeans文本聚类算法。该算法基于这样的事实... 由于初始簇中心的随机选择,K-means算法在聚类时容易出现聚类结果局部最优、聚类结果不稳定、总迭代次数较多等问题。为了解决K-means算法所存在的以上问题,提出了最大距离法选取初始簇中心的Kmeans文本聚类算法。该算法基于这样的事实:距离最远的样本点最不可能分到同一个簇中。为使该算法能应用于文本聚类,构造了一种将文本相似度转换为文本距离的方法,同时也重新构造了迭代中的簇中心计算公式和测度函数。在实例验证中,对分属于五个类别的1 500篇文本组成的文本集进行了文本聚类分析,其结果表明,与原始的K-means聚类算法以及其他的两种改进的K-means聚类算法相比,新提出的文本聚类算法在降低了聚类总耗时的同时,F度量值也有了明显提高。 展开更多
关键词 K-MEANS聚类算法 最大距离 文本聚类 文本距离 测度函数 f度量值
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部