The tunneling spectroscopy and shot noise in ferromagnet/insulator/triplet-superconductor (FM/I/triplet- SC) structures are studied by taking into account the roughness interracial barrier and exchange splitting in th...The tunneling spectroscopy and shot noise in ferromagnet/insulator/triplet-superconductor (FM/I/triplet- SC) structures are studied by taking into account the roughness interracial barrier and exchange splitting in the FM. For the triplet-SG of Sr_2RuO_4,we consider two-dimensional f-wave order parameter symmetries having nodes within the RuO_2 plane,which reasonably describe both thermodynamic and thermal conductivity data.It is shown that the ferromagnetic exchange splitting gives rise to a decrease in the differential conductance,the average current,and the shot noise power,while the noise power-to-current ratio is increased;the interface roughness is found to lead to a decrease in the differential conductance and the average current,and an increase in the noise power-to-current ratio.展开更多
We present an F-expansion method for finding periodic wave solutions of nonlinear evolution equations in mathematical physics, which can be thought of as a concentration of extended Jacobi elliptic function expansion ...We present an F-expansion method for finding periodic wave solutions of nonlinear evolution equations in mathematical physics, which can be thought of as a concentration of extended Jacobi elliptic function expansion method proposed recently. By using the F-expansion, without calculating Jacobi elliptic functions, we obtain simultaneously many periodic wave solutions expressed by various Jacobi elliptic functions for the variant Boussinesq equations. When the modulus m approaches 1 and O, the hyperbolic function solutions (including the solitary wave solutions) and trigonometric solutions are also given respectively.展开更多
A new generalized extended F-expansion method is presented for finding periodic wave solutions of nonlinear evolution equations in mathematical physics. As an application of this method, we study the (2+1)-dimensio...A new generalized extended F-expansion method is presented for finding periodic wave solutions of nonlinear evolution equations in mathematical physics. As an application of this method, we study the (2+1)-dimensional dispersive long wave equation. With the aid of computerized symbolic computation, a number of doubly periodic wave solutions expressed by various Jacobi elliptic functions are obtained. In the limit cases, the solitary wave solutions are derived as well.展开更多
The frequency–space(f–x) empirical mode decomposition(EMD) denoising method has two limitations when applied to nonstationary seismic data. First, subtracting the first intrinsic mode function(IMF) results in ...The frequency–space(f–x) empirical mode decomposition(EMD) denoising method has two limitations when applied to nonstationary seismic data. First, subtracting the first intrinsic mode function(IMF) results in signal damage and limited denoising. Second, decomposing the real and imaginary parts of complex data may lead to inconsistent decomposition numbers. Thus, we propose a new method named f–x spatial projection-based complex empirical mode decomposition(CEMD) prediction filtering. The proposed approach directly decomposes complex seismic data into a series of complex IMFs(CIMFs) using the spatial projection-based CEMD algorithm and then applies f–x predictive filtering to the stationary CIMFs to improve the signal-to-noise ratio. Synthetic and real data examples were used to demonstrate the performance of the new method in random noise attenuation and seismic signal preservation.展开更多
We modified the common-offset-common-reflection-surface (COCRS) method to attenuate ground roll, the coherent noise typically generated by a low-velocity, low-frequency, and high-amplitude Rayleigh wave. The COCRS o...We modified the common-offset-common-reflection-surface (COCRS) method to attenuate ground roll, the coherent noise typically generated by a low-velocity, low-frequency, and high-amplitude Rayleigh wave. The COCRS operator is based on hyperbolas, thus it fits events with hyperbolic traveltimes such as reflection events in prestack data. Conversely, ground roll is linear in the common-midpoint (CMP) and common-shot gathers and can be distinguished and attenuated by the COCRS operator. Thus, we search for the dip and curvature of the reflections in the common-shot gathers prior to the common-offset section. Because it is desirable to minimize the damage to the reflection amplitudes, we only stack the multicoverage data in the ground-roll areas. Searching the CS gathers before the CO section is another modification of the conventional COCRS stacking. We tested the proposed method using synthetic and real data sets from western Iran. The results of the ground-roll attenuation with the proposed method were compared with results of the f-k filtering and conventional COCRS stacking after f-k filtering. The results show that the proposed method attenuates the aliased and nonaliased ground roll better than the f-k filtering and conventional CRS stacking. However, the computation time was higher than other common methods such as f-k filtering.展开更多
New exact solutions expressed by the Jacobi elliptic functions are obtained to the (2+1)-dimensional dispersive long-wave equations by using the modified F-expansion method. In the limit case, new solitary wave sol...New exact solutions expressed by the Jacobi elliptic functions are obtained to the (2+1)-dimensional dispersive long-wave equations by using the modified F-expansion method. In the limit case, new solitary wave solutions and triangular periodic wave solutions are obtained as well.展开更多
An improved denoising method and its application in pulse beat signal denoising are studied.The proposed denoising algorithm takes the advantages of local mean decomposition(LMD)and time-frequency peak filtering(TFPF)...An improved denoising method and its application in pulse beat signal denoising are studied.The proposed denoising algorithm takes the advantages of local mean decomposition(LMD)and time-frequency peak filtering(TFPF),called L-T algorithm.As a classical time-frequency filtering method,TFPF can effectively suppress random noise with signal amplitude retained when selecting a longer window length,while the signal amplitude will be seriously attenuated when selecting a shorter window length.In order to maintain effective signal amplitude and suppress random noise,LMD and TFPF are improved.Firstly,the original signal is decomposed into progression-free survival(PFS)by LMD,and then the standard error of mean(SEM)of each product function is calculated to classify many PFSs into useful component,mixed component and noise component.Secondly,by using the shorter window TFPF for useful component and the longer window TFPF for mixed component,noise component is removed and the final signal is obtained after reconstruction.Finally,the proposed algorithm is used for noise reduction of an Fabry-Perot(F-P)pressure sensor.Experimental results show that compared with traditional wavelet,L-T algorithm has better denoising effect on sampled data.展开更多
New exact solutions expressed by the Jacobi elliptic functions are obtained to the long-short wave interaction equations by using the modified F-expansion method. In the limit case, solitary wave solutions and triangu...New exact solutions expressed by the Jacobi elliptic functions are obtained to the long-short wave interaction equations by using the modified F-expansion method. In the limit case, solitary wave solutions and triangular periodic wave solutions are obtained as well.展开更多
Using an improved homogeneous balance principle and an F-expansion technique, we construct the new exact periodic traveling wave solutions to the(3+1)-dimensional Gross–Pitaevskii equation with repulsive harmonic pot...Using an improved homogeneous balance principle and an F-expansion technique, we construct the new exact periodic traveling wave solutions to the(3+1)-dimensional Gross–Pitaevskii equation with repulsive harmonic potential. In the limit cases, the solitary wave solutions are obtained as well. We also investigate the dynamical evolution of the solitons with a time-dependent complicated potential.展开更多
In this paper, a new millimeter-wave (mm-wave) wavelength division multiplexing (WDM) system based on radio-over- fiber (ROF) technology is proposed. In this approach a multi-wavelength light source is obtained ...In this paper, a new millimeter-wave (mm-wave) wavelength division multiplexing (WDM) system based on radio-over- fiber (ROF) technology is proposed. In this approach a multi-wavelength light source is obtained by supercontinuum (SC) technique, and mm-wave signals are obtained by using optical heterodyning method. We experimentally demonstrate the generation of optical carriers for 6-WDM channels, obtain 40 GHz ram-wave signals by employing optical heterodyne technique, and successfully achieve low error rate transmission of 2.5 Gbit/s in WDM channels over a distance of 25 km in a G.652 fiber. The experimental results verify that the proposed solution is feasible and cost effective.展开更多
文摘The tunneling spectroscopy and shot noise in ferromagnet/insulator/triplet-superconductor (FM/I/triplet- SC) structures are studied by taking into account the roughness interracial barrier and exchange splitting in the FM. For the triplet-SG of Sr_2RuO_4,we consider two-dimensional f-wave order parameter symmetries having nodes within the RuO_2 plane,which reasonably describe both thermodynamic and thermal conductivity data.It is shown that the ferromagnetic exchange splitting gives rise to a decrease in the differential conductance,the average current,and the shot noise power,while the noise power-to-current ratio is increased;the interface roughness is found to lead to a decrease in the differential conductance and the average current,and an increase in the noise power-to-current ratio.
基金河南省自然科学基金,河南省教育厅自然科学基金,the Science Foundation of Henan University of Science and Technology
文摘We present an F-expansion method for finding periodic wave solutions of nonlinear evolution equations in mathematical physics, which can be thought of as a concentration of extended Jacobi elliptic function expansion method proposed recently. By using the F-expansion, without calculating Jacobi elliptic functions, we obtain simultaneously many periodic wave solutions expressed by various Jacobi elliptic functions for the variant Boussinesq equations. When the modulus m approaches 1 and O, the hyperbolic function solutions (including the solitary wave solutions) and trigonometric solutions are also given respectively.
基金The project supported in part by National Natural Science Foundation of China under Grant No. 10272071 and the Science Research Foundation of Huzhou University under Grant No. KX21025
文摘A new generalized extended F-expansion method is presented for finding periodic wave solutions of nonlinear evolution equations in mathematical physics. As an application of this method, we study the (2+1)-dimensional dispersive long wave equation. With the aid of computerized symbolic computation, a number of doubly periodic wave solutions expressed by various Jacobi elliptic functions are obtained. In the limit cases, the solitary wave solutions are derived as well.
基金supported financially by the National Natural Science Foundation(No.41174117)the Major National Science and Technology Projects(No.2011ZX05031–001)
文摘The frequency–space(f–x) empirical mode decomposition(EMD) denoising method has two limitations when applied to nonstationary seismic data. First, subtracting the first intrinsic mode function(IMF) results in signal damage and limited denoising. Second, decomposing the real and imaginary parts of complex data may lead to inconsistent decomposition numbers. Thus, we propose a new method named f–x spatial projection-based complex empirical mode decomposition(CEMD) prediction filtering. The proposed approach directly decomposes complex seismic data into a series of complex IMFs(CIMFs) using the spatial projection-based CEMD algorithm and then applies f–x predictive filtering to the stationary CIMFs to improve the signal-to-noise ratio. Synthetic and real data examples were used to demonstrate the performance of the new method in random noise attenuation and seismic signal preservation.
基金the creators of the Seismic Lab, a MATLAB seismic data processing package, the NIOC Exploration Directorate, Iran for financial support and the data of the Project No. 89235
文摘We modified the common-offset-common-reflection-surface (COCRS) method to attenuate ground roll, the coherent noise typically generated by a low-velocity, low-frequency, and high-amplitude Rayleigh wave. The COCRS operator is based on hyperbolas, thus it fits events with hyperbolic traveltimes such as reflection events in prestack data. Conversely, ground roll is linear in the common-midpoint (CMP) and common-shot gathers and can be distinguished and attenuated by the COCRS operator. Thus, we search for the dip and curvature of the reflections in the common-shot gathers prior to the common-offset section. Because it is desirable to minimize the damage to the reflection amplitudes, we only stack the multicoverage data in the ground-roll areas. Searching the CS gathers before the CO section is another modification of the conventional COCRS stacking. We tested the proposed method using synthetic and real data sets from western Iran. The results of the ground-roll attenuation with the proposed method were compared with results of the f-k filtering and conventional COCRS stacking after f-k filtering. The results show that the proposed method attenuates the aliased and nonaliased ground roll better than the f-k filtering and conventional CRS stacking. However, the computation time was higher than other common methods such as f-k filtering.
基金The project supported by the Natural Science Foundation of Shandong Province of China under Grant No. 2004 zx16
文摘New exact solutions expressed by the Jacobi elliptic functions are obtained to the (2+1)-dimensional dispersive long-wave equations by using the modified F-expansion method. In the limit case, new solitary wave solutions and triangular periodic wave solutions are obtained as well.
基金National Natural Science Foundation of China(No.51467009)Natural Science Foundation of Shanxi Province(No.51400000)。
文摘An improved denoising method and its application in pulse beat signal denoising are studied.The proposed denoising algorithm takes the advantages of local mean decomposition(LMD)and time-frequency peak filtering(TFPF),called L-T algorithm.As a classical time-frequency filtering method,TFPF can effectively suppress random noise with signal amplitude retained when selecting a longer window length,while the signal amplitude will be seriously attenuated when selecting a shorter window length.In order to maintain effective signal amplitude and suppress random noise,LMD and TFPF are improved.Firstly,the original signal is decomposed into progression-free survival(PFS)by LMD,and then the standard error of mean(SEM)of each product function is calculated to classify many PFSs into useful component,mixed component and noise component.Secondly,by using the shorter window TFPF for useful component and the longer window TFPF for mixed component,noise component is removed and the final signal is obtained after reconstruction.Finally,the proposed algorithm is used for noise reduction of an Fabry-Perot(F-P)pressure sensor.Experimental results show that compared with traditional wavelet,L-T algorithm has better denoising effect on sampled data.
文摘New exact solutions expressed by the Jacobi elliptic functions are obtained to the long-short wave interaction equations by using the modified F-expansion method. In the limit case, solitary wave solutions and triangular periodic wave solutions are obtained as well.
基金Supported by National Natural Science Foundation of China under Grant Nos.11375030 and 61304133
文摘Using an improved homogeneous balance principle and an F-expansion technique, we construct the new exact periodic traveling wave solutions to the(3+1)-dimensional Gross–Pitaevskii equation with repulsive harmonic potential. In the limit cases, the solitary wave solutions are obtained as well. We also investigate the dynamical evolution of the solitons with a time-dependent complicated potential.
基金supported by the Fundamental Research Funds for the Central Universities (No.2009RC0314)the National Natural Science Foundation of China (Nos.60932004, 61077050 and 61077014)+1 种基金the National Basic Research Program of China (No.2010CB328300)the Open Foundation of State Key laboratory of Optical Communication Technologies and Networks (WRI) (No.2010OCTN-02)
文摘In this paper, a new millimeter-wave (mm-wave) wavelength division multiplexing (WDM) system based on radio-over- fiber (ROF) technology is proposed. In this approach a multi-wavelength light source is obtained by supercontinuum (SC) technique, and mm-wave signals are obtained by using optical heterodyning method. We experimentally demonstrate the generation of optical carriers for 6-WDM channels, obtain 40 GHz ram-wave signals by employing optical heterodyne technique, and successfully achieve low error rate transmission of 2.5 Gbit/s in WDM channels over a distance of 25 km in a G.652 fiber. The experimental results verify that the proposed solution is feasible and cost effective.