One caveat to the dinosaur’s extinction is the conclusion that avian dinosaurs survived and became ancestors of birds. Their mobility enabled them to migrate great distances and find the nutrients needed to survive. ...One caveat to the dinosaur’s extinction is the conclusion that avian dinosaurs survived and became ancestors of birds. Their mobility enabled them to migrate great distances and find the nutrients needed to survive. Given this scenario, could the current observable migration of birds (the “dinosaurian offspring”) now be related? Migration is the regular seasonal movement undertaken by many species of birds, with the most common pattern, flying north in the Northern spring to breed in the temperate or Arctic summer and returning in the Northern autumn to wintering grounds in warmer regions of the south. The primary motivation for migration appears to be food. None of the major North-South migratory pathways fly over the Caribbean but three main fly ways, past to the west of the theorized K-T impact centre. Due to their ability to fly, the “avian Dinosaurs” adapted and survived very quickly in response to the disaster that marked the K-T boundary. It is an interesting speculation that the avian migration that we witness today is rooted in an event that occurred 66 million years ago! But it does explain why the migratory birds mostly fly from Polar summer to polar summer when they could just be as easily fly from Polar zone to the warmer equatorial region and back. In the recent article in Nature by Melanie During about identifying the late spring timing of the “Astro disaster”, it can be cited as consistent with my speculation. A late April early May Impact as suggested by During would have seen these migrations completely. The western migratory routes would have been found to be “luxurious” in vegetation in that first northern autumn after the “Astro-impact” while all eastern routes would have still been barren.展开更多
The Frasnian-Famennian (F-F) mass extinction is one of the five great extinctions of marine life during the Phanerozoic. The F-F event killed most of the Devonian reefs, the characteristic Devonian corals, stromatopor...The Frasnian-Famennian (F-F) mass extinction is one of the five great extinctions of marine life during the Phanerozoic. The F-F event killed most of the Devonian reefs, the characteristic Devonian corals, stromatoporoids, bryozoans, nearly all tentaculites, a few superfamilies of brachiopods, such as Atrypacea and Pentameracea and some important elements of goniatites, such as Manticoceras.``The end-Frasnian was a phase of mass extinction. A large number of shelly benthos were killed by the F-F event. Early and middle Famennian was the survival interval. The marine faunas were very rare at that time. The late Famennian was the recovery interval. There appeared to have many new taxa in the Strunian stage. It lacked a radiation interval in Late Devonian Famennian because another event (the D-C mass extinction) happened at the Devonian-Carboniferous boundary.``Several causes for the F-F mass extinction have been proposed by some geologists, which have been grouped into two broad types, terrestrial and extraterrestrial. The former is related to sea level changes, climate changes and anoxic water event. The latter is linked with some forms of meteorite impact.``A large-scale eustatic change of sea level and black shales representing an anoxic environment has been invoked to explain one of the causes for the F-F mass extinction.展开更多
After mass extinctions, most areas became “ecologically barren areas” lacking or even without ecosystem over an extensive region. Studying the pioneer organisms and the reconstruction process of a new ecosystem in t...After mass extinctions, most areas became “ecologically barren areas” lacking or even without ecosystem over an extensive region. Studying the pioneer organisms and the reconstruction process of a new ecosystem in the “ecologically barren area” is very important for revealing the evo- lution after bio-mass extinctions. In the Dushan region, Guizhou Province, China, the trace fossils appeared and flourished evidently earlier than body fossils after Frasnian-Famennian (F-F) mass extinction. The pioneer organisms and pathfinders in the “ecologically barren areas” are the trace-makers that are deposit-feeders with relatively simple structure and conformation on or near the deposit surface. The trace-makers have undergone an evolutionary process that their trace structures changed from simple to complex, and their living and moving areas and spaces enlarged from linear to planar and then to three-dimension spaces. Those characters show that the ability of the trace-makers to deposits and their efficiency of looking for food have been enhanced gradually and that those trace-makers constructed gradually a base for the new ecosystem. This process is similar to that of the trace fossils near the Precambrian-Cambrian boundary. In the Dushan area, only the recovery intervals have been identified for the Famennian body fossils, with no eminent radiation interval recognizable due to the Devonian-Carboniferous (C-D) mass ex- tinction. However, both the recovery and radiation intervals may be clearly recognized in the Famen- nian trace fossils based on their conformation and diversity. The evolution and diversification of the trace fossils in the “ecologically barren area” is considered to have played a role of necessary foun- dation for the recovery of body fossils in the ecological chain. With the gradual disappearance of the unfavourable environment factors resulting in the F-F mass extinction, a new ecosystem was reconstructed in the “ecologically barren area” through a three-step process from the “original ecosystem” to “elementary ecosystem” and finally to the “developed eco- system”. The establishment of the new ecosystem has laid a foundation for the recovery of the body fossils thereafter.展开更多
With the method of differential optical absorption spectroscopy (DOAS), average concentrations of aerosol particles along light path were measured with a flashlight source in Chiba area during the period of one mont...With the method of differential optical absorption spectroscopy (DOAS), average concentrations of aerosol particles along light path were measured with a flashlight source in Chiba area during the period of one month. The optical thickness at 550 nm is compared with the concentration of ground-measured suspended particulate matter (SPM). Good correlations are found between the DOAS and SPM data, leading to the determination of the aerosol mass extinction efficiency (MEE) to be possible in the lower troposphere. The average MEE value is about 7.6m^2.g^-1 , and the parameter exhibits a good correlation with the particle size as determined from the wavelength dependence of the DOAS signal intensity.展开更多
This paper discusses the clayrocks widespread at the Permian-Triassic boundary, which are mostly of volcanic origin. Volcanogenetic textures, structures and minerals such as high-temperature quartz are found in clayro...This paper discusses the clayrocks widespread at the Permian-Triassic boundary, which are mostly of volcanic origin. Volcanogenetic textures, structures and minerals such as high-temperature quartz are found in clayrocks at the Permian-Triassic boundary in many places. Thousands of microspherules have been collected from the Boundary clayrocks, many of which exhibit the typical features of the process from melting to cooling and solidification. indicating that they were formed by volcanic eruption or extraterrestrial impact. Volcanic effects on the Permian-Triassic mass extinction may be reflected in conodonts, algae and ammonoids. The Boundary clayrocks are found in many Permian-Triassic sections along the coast of Tethys. Their orighin remains to be studied.展开更多
Shaw's method used to correlate 40 sections across the Permo-Triassic boundary in South China is applied in the paper. Two steps are adopted to get an Integral Composite Section (ICS) by synthesizing these data : ...Shaw's method used to correlate 40 sections across the Permo-Triassic boundary in South China is applied in the paper. Two steps are adopted to get an Integral Composite Section (ICS) by synthesizing these data : First , South China is divided into five areas and composite section developed for each area . Then the second step . the Changxing composite section is regarded as a composite standard (CSRS) while the ICS is produced by matching the CSRS with composite sections of the other areas. Three biozones in the Changxingian and two biozones in the Griesbachian can be discerned on the basis of computing Z values in the ICS. These biozones are marked by the Z values which quantitatively represent their time ranges ; therefore , they may increase accuracy of stratigraphic time correlation . The mass extinction at the end of the Permian is an abrupt event that is supported by the relative rate of extinction near the P/T boundary . About 90% of invertebrate species died out by the end of the Permian . The duration of the mass extinction is rather short ,approximately 0.018Ma .展开更多
The rugosan fauna from the Guanyinqiao Bed (latest Ordovician, Hirnantian) of northern Guizhou, China is known to belong to the cold or cool-water type corals. The components of the fauna are solitary corals only, a...The rugosan fauna from the Guanyinqiao Bed (latest Ordovician, Hirnantian) of northern Guizhou, China is known to belong to the cold or cool-water type corals. The components of the fauna are solitary corals only, and corallite septa are generally strongly dilated, especially the streptelasmatid corals are dominant comprising 98% of the whole fauna. The Guanyinqiao Bed is rich in rugosans of 18 genera, which are streptelasnmtid Streptelasma (=Helicelasma), Brachyelasma, Amplexobrachyelasma, Salvadorea, Grewingkia, Borelasma, CrassUasma, Leolasma, KenophyUum, UUernelasma, Paramplexoides, Siphonolasma, Pycnactoides, Dalmanophyllum, Bodophyllum, Axiphoria, Lambeophyllum and cystiphyllid Sinkiangolasma. Although this fauna was fairly abundant in a confined area (northern-northeastern Guizhou, southern Sichuan) during the Hirnantian age, the rugosan mass extinction (generic extinction rate 81%) happened at the end of the Hirnantian Stage. It is conduded that the mass extinction is related to the ending of maximum glaciation and ice cap melting in Gondwana in the southern hemisphere in the latest Hirnantian, resulting in rapid global sea-level rise in the earliest Silurian. In the Upper Yangtze Basin, the sea bottom environments were replaced by anoxic and warmer water during that time, so that the cool-water type rugosan became extinct. The present paper attempts to revise some already described rugose coral genera and species (He, 1978, 1985) and to supplement a few new forms from the Guanyinqiao Bed. Fourteen species of 12 genera are re-described and illustrated, of which one species- Grewingkia latifossulata is new. As a whole, the rugosan fauna of the Guanyinqiao Bed may be correlated with those contemporaneous of North Europe, Estonia and North America, indicating a dose biogeographic affinity to North Europe.展开更多
In this study, the reasons for mass extinction in Jurassic were investigated. It was shown that galactic compression led to the activation of terrestrial nuclear reactors, which in turn led to the changes in tectonic ...In this study, the reasons for mass extinction in Jurassic were investigated. It was shown that galactic compression led to the activation of terrestrial nuclear reactors, which in turn led to the changes in tectonic activity, volcano eruptions, LIPs, MORBs, paleoclimate change, drift of continents, narrowing of the Earth, worldwide floods, tsunami, changes in mantle and core structures, in magnetic fields and in sedimentary isotopes. It was shown that the mass extinctions occurred during worldwide floods, caused by the narrowing of the Earth at the time of galactic gravitational compression. It was shown that the average statistical altitude distribution of dinosaurs has a bimodal distribution and corresponds to permanent migrations between the plains and the hills. It has been suggested that the skeletons of dinosaurs are well preserved as a result of covering the bodies of dinosaurs with mud flows of coastal sediments and the soil layers at worldwide tsunami. It was formulated the requirement to paleontology, consisting in the obligatory registration of altitudes of the actual place of the fossils found. The simple explanation of the presence of boundaries in the structure of the Earth is given: the 40K nuclear layer corresponds to the boundary between upper and lower mantle;the 137Cs layer located on the boundary between the lower mantle and the outer core;the Th-U nuclear layer is a border between outer and inner core. The previously abstract theories of subduction and continents drift have a clear and obvious physical sense. It was shown that the standard geological table is a registration book of galactic events during Paleozoic. It is proposed to restore the structure of the galactic arms by the geological deposits on the Earth. It was suggested to create the stations on elevated hills for rescue and regeneration of biological forms in the future.展开更多
1 Introduction The end-Triassic mass extinction event is one of the five global mass extinctions,and destroyed both the marine and terrestrial biological worlds.Though years the marine endTriassic mass extinction(ETE)...1 Introduction The end-Triassic mass extinction event is one of the five global mass extinctions,and destroyed both the marine and terrestrial biological worlds.Though years the marine endTriassic mass extinction(ETE)event has been widely studied and discussed,and the standard marine Triassic/Jurassic boundary(TJB)(base-Jurassic)has also been determined.However.展开更多
The Late Ordovician mass extinction(LOME)was the first global extinction with the destruction of 85%of marine species.However,the cause of LOME is still controversial.Most studies attribute it to large-scale volcanism...The Late Ordovician mass extinction(LOME)was the first global extinction with the destruction of 85%of marine species.However,the cause of LOME is still controversial.Most studies attribute it to large-scale volcanism caused by global cooling or warming.Through analyzing the driving difference between global cooling and warming on large-scale magmatism,the perspective is intended to evoke a hot discussion on the cause of LOME.Did global cooling or warming trigger the LOME?展开更多
High resolution sampling across the Cretaceous/Paleogene boundary (K/Pg) at the Galanderud section in northern Iran provides the most expanded and continuous section for us to consider biostratigraphy and the mass ext...High resolution sampling across the Cretaceous/Paleogene boundary (K/Pg) at the Galanderud section in northern Iran provides the most expanded and continuous section for us to consider biostratigraphy and the mass extinction pattern of Cretaceous planktic foraminifera. Based on planktic foraminifera, four biozones and five sub-biozones have been identified across the K/Pg boundary. These biozones include the Abathomphalus mayaroensis Biozone (Plummerita hantkeninoides subbiozone), the Guembelitria cretacea Biozone (including two sub-biozones: the Hedbergella holmdelensis and the Parvularugoglobigerina longiapertura), the Parvularugoglobigerina eugubina Biozone (including two subbiozones: the Parvularugoglobigerina Sabina and the Eoglobigerina simplicissima) and finely the Parasubbotina pseudobulloides Biozone. Planktic foraminiferal extinction occurred over a brief period, with 3% of the species disappearing in the late Maastrichtian, and 72% of the species becaming extinct at the K/Pg boundary. About 25% of the species survived into the early Danian. Extinction of 73% of the species at the K/Pg boundary is very compatible with the effect of a large asteroid impact.展开更多
Extreme gravitational collapse is explored by utilizing two fundamental properties and one reasonable assumption, which together lead logically to an end-state gravitating structure. This structure, called a Terminal ...Extreme gravitational collapse is explored by utilizing two fundamental properties and one reasonable assumption, which together lead logically to an end-state gravitating structure. This structure, called a Terminal state neutron star, manifests nature’s ultimate density of mass and possesses the ultimate electromagnetic barrier. It is then shown how this structure is central to the remarkable mechanism whereby the density is prevented from going higher. A simple process assures that such density is not exceeded—regardless of the quantity of additional mass. As an example, the discourse focuses on the expected progression and outcome when a compact star of <img src="Edit_2c290d68-3330-4724-9e68-e7f1c9d3df1a.png" width="25" height="15" alt="" />—far more mass than can be accommodated by the basic Terminal state structure—undergoes total gravitational collapse. An examination of what happens to the considerable excess mass leads the discussion to the <i>principle of mass extinction by the process of aether deprivation</i> and its profound implications for black-hole physics and the current revolution in cosmology.展开更多
A method for aerosol extinction profile retrieval using ground-based multi-axis differential optical absorption spectroscopy(MAX-DOAS)is studied,which is based on a look-up table algorithm.The algorithm uses parametri...A method for aerosol extinction profile retrieval using ground-based multi-axis differential optical absorption spectroscopy(MAX-DOAS)is studied,which is based on a look-up table algorithm.The algorithm uses parametric method to represent aerosol extinction profiles and simulate different atmospheric aerosol states through atmospheric radiation transfer model.Based on the method,aerosol extinction profile was obtained during six cloud-free days.The O4 differential air mass factor(dAMF)measured by MAX-DOAS is compared with the corresponding model results under different atmospheric conditions(R^2=0.78).The aerosol optical thickness,aerosol weight factor in boundary layer,and the height of the boundary layer are obtained after the process of minimization and look-up table method.The retrieved aerosol extinction in boundary layer is compared with PM2.5 data measured by ground point instrument.The diurnal variation trends of the two methods are in good agreement.The correlation coefficients of the two methods are 0.71 when the aerosol optical thickness is smaller than 0.5.The results show that the look-up table method can obtain the aerosol state of the troposphere and provide validation for other instrument data.展开更多
The hygroscopic properties of mixed aerosol particles are crucial for the application of remote sensing products of aerosol optical parameters in the study of air quality and climate at multiple scales. In this study,...The hygroscopic properties of mixed aerosol particles are crucial for the application of remote sensing products of aerosol optical parameters in the study of air quality and climate at multiple scales. In this study, the authors investigated aerosol optical properties as a func tion of relative humidity (RH) for two representative me tropolises: Beijing and Hong Kong. In addition to the RH data, mass concentrations of PM10 (particulate matter up to 10 utm in diameter) and aerosol scattering extinction coefficient (aext) data were used. The relationship between the mass scattering extinction efficiency (MEE, defined as O'ext/PMl0) and RH can be expressed by regression func tions asf= 1.52x + 0.29 (re= 0.77),f= 1.42x + 1.53 (re= 0.58),f= 1.19x + 0.65 (re= 0.59), andf= 1.58x + 1.30 (re = 0.61) for spring, summer, autumn, and winter, respec tively, in Beijing. Here, f represents MEE, x represents I/(1-RH), and the coefficients of determination are pre sented in parentheses. Conversely, in Hong Kong, the corresponding functions are f= 1.98x- 1.40 (r^2= 0.55),f = 1.32x - 0.36 (r^2 = 0.26),f= 1.87x - 0.65 (r^2 = 0.64), and f= 2.39x - 1.47 (r^2 = 0.72), respectively. The MEE values for Hong Kong at high RHs (RH 〉 70%) are higher than those for Beijing, except in summer; this suggests that aerosols in Hong Kong are more hygroscopic than those in Beijing for the other three seasons, but the aerosol hy groscopicity is similarly high in summer over both cities. This study describes the effects of moisture on aerosol scattering extinction coefficients and provides a potential method of studying atmospheric visibility and ground level air quality using some of the optical remote sensing products of satellites.展开更多
建立一种基于美国官方分析化学师协会(Association of Official Analytical Chemists,AOAC)方法检测黑果枸杞及其制品中花青素含量的改进pH示差法。考察了黑果枸杞及其制品中花青素的最佳提取和检测条件,通过液相色谱-三重四级杆串联质...建立一种基于美国官方分析化学师协会(Association of Official Analytical Chemists,AOAC)方法检测黑果枸杞及其制品中花青素含量的改进pH示差法。考察了黑果枸杞及其制品中花青素的最佳提取和检测条件,通过液相色谱-三重四级杆串联质谱法鉴别出黑果枸杞中花青素的具体化学结构,并计算出混合花青素的平均摩尔质量。通过分光光度法测得混合花青素的平均摩尔消光系数,对改进后的pH示差法进行方法学验证和花青素的含量测定。结果显示,最佳提取和检测条件如下:黑果枸杞花青素提取溶剂为盐酸-80%(体积分数)乙醇(3∶97,体积比),料液比为1∶100(g∶mL),提取温度为50℃,提取时间为30 min,缓冲溶液稀释5倍后静置平衡20 min。液相色谱-三重四级杆串联质谱法鉴别黑果枸杞中主要以矮牵牛素类花青素为主(占97.96%),黑果枸杞特有的混合花青素平均摩尔质量为912.7 g/mol,平均摩尔消光系数为29591 L/(mol·cm)。pH示差法改进后能够满足方法学验证要求,固体样品和液体样品最低检出限分别为28.2 mg/100 g、0.282 mg/100 mL。方法改进后花青素提取增长率均大于20%,静置平衡20 min后单次检测结果精密度小于0.3%。以矮牵牛素类花青素代替矢车菊素-3-O-葡萄糖苷计算花青素含量平均提高了2.41倍,能真实地反映黑果枸杞及其制品中花青素的含量。展开更多
文摘One caveat to the dinosaur’s extinction is the conclusion that avian dinosaurs survived and became ancestors of birds. Their mobility enabled them to migrate great distances and find the nutrients needed to survive. Given this scenario, could the current observable migration of birds (the “dinosaurian offspring”) now be related? Migration is the regular seasonal movement undertaken by many species of birds, with the most common pattern, flying north in the Northern spring to breed in the temperate or Arctic summer and returning in the Northern autumn to wintering grounds in warmer regions of the south. The primary motivation for migration appears to be food. None of the major North-South migratory pathways fly over the Caribbean but three main fly ways, past to the west of the theorized K-T impact centre. Due to their ability to fly, the “avian Dinosaurs” adapted and survived very quickly in response to the disaster that marked the K-T boundary. It is an interesting speculation that the avian migration that we witness today is rooted in an event that occurred 66 million years ago! But it does explain why the migratory birds mostly fly from Polar summer to polar summer when they could just be as easily fly from Polar zone to the warmer equatorial region and back. In the recent article in Nature by Melanie During about identifying the late spring timing of the “Astro disaster”, it can be cited as consistent with my speculation. A late April early May Impact as suggested by During would have seen these migrations completely. The western migratory routes would have been found to be “luxurious” in vegetation in that first northern autumn after the “Astro-impact” while all eastern routes would have still been barren.
基金This work was supported by the Major State Basic Research Projects of China (Grant No.2000077704) the Major Project of the Chinese Academy of Sciences (Gram No. KZ-952-J1-023) the National Natural Science Foundation of China (Grant No. 49872007)
文摘The Frasnian-Famennian (F-F) mass extinction is one of the five great extinctions of marine life during the Phanerozoic. The F-F event killed most of the Devonian reefs, the characteristic Devonian corals, stromatoporoids, bryozoans, nearly all tentaculites, a few superfamilies of brachiopods, such as Atrypacea and Pentameracea and some important elements of goniatites, such as Manticoceras.``The end-Frasnian was a phase of mass extinction. A large number of shelly benthos were killed by the F-F event. Early and middle Famennian was the survival interval. The marine faunas were very rare at that time. The late Famennian was the recovery interval. There appeared to have many new taxa in the Strunian stage. It lacked a radiation interval in Late Devonian Famennian because another event (the D-C mass extinction) happened at the Devonian-Carboniferous boundary.``Several causes for the F-F mass extinction have been proposed by some geologists, which have been grouped into two broad types, terrestrial and extraterrestrial. The former is related to sea level changes, climate changes and anoxic water event. The latter is linked with some forms of meteorite impact.``A large-scale eustatic change of sea level and black shales representing an anoxic environment has been invoked to explain one of the causes for the F-F mass extinction.
基金supported by the National Natural Science F oundation of China(Grant No.40172014)the Guizhou University Foundation.
文摘After mass extinctions, most areas became “ecologically barren areas” lacking or even without ecosystem over an extensive region. Studying the pioneer organisms and the reconstruction process of a new ecosystem in the “ecologically barren area” is very important for revealing the evo- lution after bio-mass extinctions. In the Dushan region, Guizhou Province, China, the trace fossils appeared and flourished evidently earlier than body fossils after Frasnian-Famennian (F-F) mass extinction. The pioneer organisms and pathfinders in the “ecologically barren areas” are the trace-makers that are deposit-feeders with relatively simple structure and conformation on or near the deposit surface. The trace-makers have undergone an evolutionary process that their trace structures changed from simple to complex, and their living and moving areas and spaces enlarged from linear to planar and then to three-dimension spaces. Those characters show that the ability of the trace-makers to deposits and their efficiency of looking for food have been enhanced gradually and that those trace-makers constructed gradually a base for the new ecosystem. This process is similar to that of the trace fossils near the Precambrian-Cambrian boundary. In the Dushan area, only the recovery intervals have been identified for the Famennian body fossils, with no eminent radiation interval recognizable due to the Devonian-Carboniferous (C-D) mass ex- tinction. However, both the recovery and radiation intervals may be clearly recognized in the Famen- nian trace fossils based on their conformation and diversity. The evolution and diversification of the trace fossils in the “ecologically barren area” is considered to have played a role of necessary foun- dation for the recovery of body fossils in the ecological chain. With the gradual disappearance of the unfavourable environment factors resulting in the F-F mass extinction, a new ecosystem was reconstructed in the “ecologically barren area” through a three-step process from the “original ecosystem” to “elementary ecosystem” and finally to the “developed eco- system”. The establishment of the new ecosystem has laid a foundation for the recovery of the body fossils thereafter.
基金Project supported by National Natural Science Foundation of China (Grant No 10274080).
文摘With the method of differential optical absorption spectroscopy (DOAS), average concentrations of aerosol particles along light path were measured with a flashlight source in Chiba area during the period of one month. The optical thickness at 550 nm is compared with the concentration of ground-measured suspended particulate matter (SPM). Good correlations are found between the DOAS and SPM data, leading to the determination of the aerosol mass extinction efficiency (MEE) to be possible in the lower troposphere. The average MEE value is about 7.6m^2.g^-1 , and the parameter exhibits a good correlation with the particle size as determined from the wavelength dependence of the DOAS signal intensity.
文摘This paper discusses the clayrocks widespread at the Permian-Triassic boundary, which are mostly of volcanic origin. Volcanogenetic textures, structures and minerals such as high-temperature quartz are found in clayrocks at the Permian-Triassic boundary in many places. Thousands of microspherules have been collected from the Boundary clayrocks, many of which exhibit the typical features of the process from melting to cooling and solidification. indicating that they were formed by volcanic eruption or extraterrestrial impact. Volcanic effects on the Permian-Triassic mass extinction may be reflected in conodonts, algae and ammonoids. The Boundary clayrocks are found in many Permian-Triassic sections along the coast of Tethys. Their orighin remains to be studied.
文摘Shaw's method used to correlate 40 sections across the Permo-Triassic boundary in South China is applied in the paper. Two steps are adopted to get an Integral Composite Section (ICS) by synthesizing these data : First , South China is divided into five areas and composite section developed for each area . Then the second step . the Changxing composite section is regarded as a composite standard (CSRS) while the ICS is produced by matching the CSRS with composite sections of the other areas. Three biozones in the Changxingian and two biozones in the Griesbachian can be discerned on the basis of computing Z values in the ICS. These biozones are marked by the Z values which quantitatively represent their time ranges ; therefore , they may increase accuracy of stratigraphic time correlation . The mass extinction at the end of the Permian is an abrupt event that is supported by the relative rate of extinction near the P/T boundary . About 90% of invertebrate species died out by the end of the Permian . The duration of the mass extinction is rather short ,approximately 0.018Ma .
文摘The rugosan fauna from the Guanyinqiao Bed (latest Ordovician, Hirnantian) of northern Guizhou, China is known to belong to the cold or cool-water type corals. The components of the fauna are solitary corals only, and corallite septa are generally strongly dilated, especially the streptelasmatid corals are dominant comprising 98% of the whole fauna. The Guanyinqiao Bed is rich in rugosans of 18 genera, which are streptelasnmtid Streptelasma (=Helicelasma), Brachyelasma, Amplexobrachyelasma, Salvadorea, Grewingkia, Borelasma, CrassUasma, Leolasma, KenophyUum, UUernelasma, Paramplexoides, Siphonolasma, Pycnactoides, Dalmanophyllum, Bodophyllum, Axiphoria, Lambeophyllum and cystiphyllid Sinkiangolasma. Although this fauna was fairly abundant in a confined area (northern-northeastern Guizhou, southern Sichuan) during the Hirnantian age, the rugosan mass extinction (generic extinction rate 81%) happened at the end of the Hirnantian Stage. It is conduded that the mass extinction is related to the ending of maximum glaciation and ice cap melting in Gondwana in the southern hemisphere in the latest Hirnantian, resulting in rapid global sea-level rise in the earliest Silurian. In the Upper Yangtze Basin, the sea bottom environments were replaced by anoxic and warmer water during that time, so that the cool-water type rugosan became extinct. The present paper attempts to revise some already described rugose coral genera and species (He, 1978, 1985) and to supplement a few new forms from the Guanyinqiao Bed. Fourteen species of 12 genera are re-described and illustrated, of which one species- Grewingkia latifossulata is new. As a whole, the rugosan fauna of the Guanyinqiao Bed may be correlated with those contemporaneous of North Europe, Estonia and North America, indicating a dose biogeographic affinity to North Europe.
文摘In this study, the reasons for mass extinction in Jurassic were investigated. It was shown that galactic compression led to the activation of terrestrial nuclear reactors, which in turn led to the changes in tectonic activity, volcano eruptions, LIPs, MORBs, paleoclimate change, drift of continents, narrowing of the Earth, worldwide floods, tsunami, changes in mantle and core structures, in magnetic fields and in sedimentary isotopes. It was shown that the mass extinctions occurred during worldwide floods, caused by the narrowing of the Earth at the time of galactic gravitational compression. It was shown that the average statistical altitude distribution of dinosaurs has a bimodal distribution and corresponds to permanent migrations between the plains and the hills. It has been suggested that the skeletons of dinosaurs are well preserved as a result of covering the bodies of dinosaurs with mud flows of coastal sediments and the soil layers at worldwide tsunami. It was formulated the requirement to paleontology, consisting in the obligatory registration of altitudes of the actual place of the fossils found. The simple explanation of the presence of boundaries in the structure of the Earth is given: the 40K nuclear layer corresponds to the boundary between upper and lower mantle;the 137Cs layer located on the boundary between the lower mantle and the outer core;the Th-U nuclear layer is a border between outer and inner core. The previously abstract theories of subduction and continents drift have a clear and obvious physical sense. It was shown that the standard geological table is a registration book of galactic events during Paleozoic. It is proposed to restore the structure of the galactic arms by the geological deposits on the Earth. It was suggested to create the stations on elevated hills for rescue and regeneration of biological forms in the future.
基金financially supported by the National Natural Science Foundation of China(Grant No.41730317)Special Basic Program of Ministry of Science and Technology of China(Grant No.2015FY310100)+1 种基金Bureau of Geological Survey of China and National Committee ofStratigraphy of China(Grant No.DD20160120-04)UNESCO-IUGS IGCP project 632.
文摘1 Introduction The end-Triassic mass extinction event is one of the five global mass extinctions,and destroyed both the marine and terrestrial biological worlds.Though years the marine endTriassic mass extinction(ETE)event has been widely studied and discussed,and the standard marine Triassic/Jurassic boundary(TJB)(base-Jurassic)has also been determined.However.
文摘The Late Ordovician mass extinction(LOME)was the first global extinction with the destruction of 85%of marine species.However,the cause of LOME is still controversial.Most studies attribute it to large-scale volcanism caused by global cooling or warming.Through analyzing the driving difference between global cooling and warming on large-scale magmatism,the perspective is intended to evoke a hot discussion on the cause of LOME.Did global cooling or warming trigger the LOME?
文摘High resolution sampling across the Cretaceous/Paleogene boundary (K/Pg) at the Galanderud section in northern Iran provides the most expanded and continuous section for us to consider biostratigraphy and the mass extinction pattern of Cretaceous planktic foraminifera. Based on planktic foraminifera, four biozones and five sub-biozones have been identified across the K/Pg boundary. These biozones include the Abathomphalus mayaroensis Biozone (Plummerita hantkeninoides subbiozone), the Guembelitria cretacea Biozone (including two sub-biozones: the Hedbergella holmdelensis and the Parvularugoglobigerina longiapertura), the Parvularugoglobigerina eugubina Biozone (including two subbiozones: the Parvularugoglobigerina Sabina and the Eoglobigerina simplicissima) and finely the Parasubbotina pseudobulloides Biozone. Planktic foraminiferal extinction occurred over a brief period, with 3% of the species disappearing in the late Maastrichtian, and 72% of the species becaming extinct at the K/Pg boundary. About 25% of the species survived into the early Danian. Extinction of 73% of the species at the K/Pg boundary is very compatible with the effect of a large asteroid impact.
文摘Extreme gravitational collapse is explored by utilizing two fundamental properties and one reasonable assumption, which together lead logically to an end-state gravitating structure. This structure, called a Terminal state neutron star, manifests nature’s ultimate density of mass and possesses the ultimate electromagnetic barrier. It is then shown how this structure is central to the remarkable mechanism whereby the density is prevented from going higher. A simple process assures that such density is not exceeded—regardless of the quantity of additional mass. As an example, the discourse focuses on the expected progression and outcome when a compact star of <img src="Edit_2c290d68-3330-4724-9e68-e7f1c9d3df1a.png" width="25" height="15" alt="" />—far more mass than can be accommodated by the basic Terminal state structure—undergoes total gravitational collapse. An examination of what happens to the considerable excess mass leads the discussion to the <i>principle of mass extinction by the process of aether deprivation</i> and its profound implications for black-hole physics and the current revolution in cosmology.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.41875040,41705012,and 1605013)
文摘A method for aerosol extinction profile retrieval using ground-based multi-axis differential optical absorption spectroscopy(MAX-DOAS)is studied,which is based on a look-up table algorithm.The algorithm uses parametric method to represent aerosol extinction profiles and simulate different atmospheric aerosol states through atmospheric radiation transfer model.Based on the method,aerosol extinction profile was obtained during six cloud-free days.The O4 differential air mass factor(dAMF)measured by MAX-DOAS is compared with the corresponding model results under different atmospheric conditions(R^2=0.78).The aerosol optical thickness,aerosol weight factor in boundary layer,and the height of the boundary layer are obtained after the process of minimization and look-up table method.The retrieved aerosol extinction in boundary layer is compared with PM2.5 data measured by ground point instrument.The diurnal variation trends of the two methods are in good agreement.The correlation coefficients of the two methods are 0.71 when the aerosol optical thickness is smaller than 0.5.The results show that the look-up table method can obtain the aerosol state of the troposphere and provide validation for other instrument data.
基金supported by the"Strategic Priority Research Program" of the Chinese Academy of Sciences (Grant No. XDA05040000)the National Natural Science Foundation of China (Grant Nos. 40775002 and 41175020)the National High Technology Research and Development Program of China (863 Program, Grant No. SQ2010AA1221583001)
文摘The hygroscopic properties of mixed aerosol particles are crucial for the application of remote sensing products of aerosol optical parameters in the study of air quality and climate at multiple scales. In this study, the authors investigated aerosol optical properties as a func tion of relative humidity (RH) for two representative me tropolises: Beijing and Hong Kong. In addition to the RH data, mass concentrations of PM10 (particulate matter up to 10 utm in diameter) and aerosol scattering extinction coefficient (aext) data were used. The relationship between the mass scattering extinction efficiency (MEE, defined as O'ext/PMl0) and RH can be expressed by regression func tions asf= 1.52x + 0.29 (re= 0.77),f= 1.42x + 1.53 (re= 0.58),f= 1.19x + 0.65 (re= 0.59), andf= 1.58x + 1.30 (re = 0.61) for spring, summer, autumn, and winter, respec tively, in Beijing. Here, f represents MEE, x represents I/(1-RH), and the coefficients of determination are pre sented in parentheses. Conversely, in Hong Kong, the corresponding functions are f= 1.98x- 1.40 (r^2= 0.55),f = 1.32x - 0.36 (r^2 = 0.26),f= 1.87x - 0.65 (r^2 = 0.64), and f= 2.39x - 1.47 (r^2 = 0.72), respectively. The MEE values for Hong Kong at high RHs (RH 〉 70%) are higher than those for Beijing, except in summer; this suggests that aerosols in Hong Kong are more hygroscopic than those in Beijing for the other three seasons, but the aerosol hy groscopicity is similarly high in summer over both cities. This study describes the effects of moisture on aerosol scattering extinction coefficients and provides a potential method of studying atmospheric visibility and ground level air quality using some of the optical remote sensing products of satellites.