Fabry-Perot(F-P)谐振腔天线通常易实现高增益,但由于口径场非均匀的电磁场分布,使得其在大口径尺寸下的口径效率较低。本文设计了一种新型的F-P谐振腔天线,该天线采用非均匀特异媒质覆盖层实现口径场等幅分布,并通过非均匀特异媒质反...Fabry-Perot(F-P)谐振腔天线通常易实现高增益,但由于口径场非均匀的电磁场分布,使得其在大口径尺寸下的口径效率较低。本文设计了一种新型的F-P谐振腔天线,该天线采用非均匀特异媒质覆盖层实现口径场等幅分布,并通过非均匀特异媒质反射地实现口径场同相分布,从而提升F-P谐振腔天线在大口径尺寸下的口径效率。基于射线追踪法,推导了非均匀覆盖层和非均匀反射地的设计公式。本文设计、加工并测试了一款口径尺寸为5.18λ(λ为自由空间波长)的圆形F-P谐振腔天线。仿真和测试结果吻合良好,|S11|<-10 d B的阻抗带宽为4.14%(5.740~5.980 GHz);在工作频点5.8 GHz处,该新型F-P谐振腔天线的增益为23.8 d Bi,与传统F-P谐振腔天线相比,其口径效率从78.9%提高到90.5%。展开更多
文摘Fabry-Perot(F-P)谐振腔天线通常易实现高增益,但由于口径场非均匀的电磁场分布,使得其在大口径尺寸下的口径效率较低。本文设计了一种新型的F-P谐振腔天线,该天线采用非均匀特异媒质覆盖层实现口径场等幅分布,并通过非均匀特异媒质反射地实现口径场同相分布,从而提升F-P谐振腔天线在大口径尺寸下的口径效率。基于射线追踪法,推导了非均匀覆盖层和非均匀反射地的设计公式。本文设计、加工并测试了一款口径尺寸为5.18λ(λ为自由空间波长)的圆形F-P谐振腔天线。仿真和测试结果吻合良好,|S11|<-10 d B的阻抗带宽为4.14%(5.740~5.980 GHz);在工作频点5.8 GHz处,该新型F-P谐振腔天线的增益为23.8 d Bi,与传统F-P谐振腔天线相比,其口径效率从78.9%提高到90.5%。