期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Relief F-RFE特征优选的桉树人工林提取
1
作者
林小棋
任超
+3 位作者
李毅
梁月吉
岳韦霆
梁洁玉
《测绘科学》
CSCD
北大核心
2023年第10期107-115,共9页
针对信息冗余导致机器学习分类精度下降的问题,该文提出了一种结合Relief F和递归特征消除法(RFE)进行特征优选的桉树人工林面积提取方法。首先将Zhuhai-1和Sentinel-1卫星影像进行融合,通过结合Relief F和RFE进行特征优选,以减少信息...
针对信息冗余导致机器学习分类精度下降的问题,该文提出了一种结合Relief F和递归特征消除法(RFE)进行特征优选的桉树人工林面积提取方法。首先将Zhuhai-1和Sentinel-1卫星影像进行融合,通过结合Relief F和RFE进行特征优选,以减少信息冗余的影响。其次,基于光谱、红边指数、纹理特征、植被指数和后散射系数等特征,采用简单非迭代聚类(SNIC)面向对象和随机森林(RF)算法进行桉树人工林面积提取。最后,为验证Relief F-RFE模型在分类方面的性能表现,将其与无特征优选下基于Zhuhai-1和融合数据以及基于RF特征优选的分类结果进行对比分析。结果表明:利用Relief F-RFE优选特征能有效提高桉树人工林分类精度,总体精度达到96.43%,相比于无特征优选下基于Zhuhai-1和融合数据分类结果,总体精度分别提高14.95%和8.43%。在与RF特征选择方法进行对比时,总体精度有所增长,提高了7.55%。
展开更多
关键词
桉树人工林
影像融合
简单非迭代聚类
Relief
f-rfe特征选择
原文传递
题名
基于Relief F-RFE特征优选的桉树人工林提取
1
作者
林小棋
任超
李毅
梁月吉
岳韦霆
梁洁玉
机构
桂林理工大学测绘地理信息学院
广西空间信息与测绘重点实验室
广西壮族自治区自然资源和不动产登记中心
出处
《测绘科学》
CSCD
北大核心
2023年第10期107-115,共9页
基金
国家自然科学基金项目(42064003)
广西自然科学基金青年科学基金项目(2021JJB150020)。
文摘
针对信息冗余导致机器学习分类精度下降的问题,该文提出了一种结合Relief F和递归特征消除法(RFE)进行特征优选的桉树人工林面积提取方法。首先将Zhuhai-1和Sentinel-1卫星影像进行融合,通过结合Relief F和RFE进行特征优选,以减少信息冗余的影响。其次,基于光谱、红边指数、纹理特征、植被指数和后散射系数等特征,采用简单非迭代聚类(SNIC)面向对象和随机森林(RF)算法进行桉树人工林面积提取。最后,为验证Relief F-RFE模型在分类方面的性能表现,将其与无特征优选下基于Zhuhai-1和融合数据以及基于RF特征优选的分类结果进行对比分析。结果表明:利用Relief F-RFE优选特征能有效提高桉树人工林分类精度,总体精度达到96.43%,相比于无特征优选下基于Zhuhai-1和融合数据分类结果,总体精度分别提高14.95%和8.43%。在与RF特征选择方法进行对比时,总体精度有所增长,提高了7.55%。
关键词
桉树人工林
影像融合
简单非迭代聚类
Relief
f-rfe特征选择
Keywords
eucalyptus plantation forest
remote sensing image fusion
SNIC
Relief
f-rfe
feature selection
分类号
P237 [天文地球—摄影测量与遥感]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于Relief F-RFE特征优选的桉树人工林提取
林小棋
任超
李毅
梁月吉
岳韦霆
梁洁玉
《测绘科学》
CSCD
北大核心
2023
0
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部