BACKGROUND Dilated cardiomyopathy(DCM)is a genetically heterogeneous cardiac disorder characterized by left ventricular dilation and contractile dysfunction.The substantial genetic heterogeneity evident in patients wi...BACKGROUND Dilated cardiomyopathy(DCM)is a genetically heterogeneous cardiac disorder characterized by left ventricular dilation and contractile dysfunction.The substantial genetic heterogeneity evident in patients with DCM contributes to variable disease severity and complicates overall prognosis,which can be very poor.AIM To identify pathogenic genes in DCM through pedigree analysis.METHODS Our research team identified a patient with DCM in the clinic.Through invest-igation,we found that the family of this patient has a typical DCM pedigree.High-throughput sequencing technology,next-generation sequencing,was used to sequence the whole exomes of seven samples in the pedigree.RESULTS A novel and potentially pathogenic gene mutation-ANK2p.F3067L-was discovered.The mutation was completely consistent with the clinical information for this DCM pedigree.Sanger sequencing was used to further verify the locus of the mutation in pedigree samples.These results were consistent with those of high-throughput sequencing.CONCLUSIONS ANK2p.F3067L is considered a novel and potentially pathogenic gene mutation in DCM.展开更多
基金Supported by the Jilin Provincial Healthcare Talent Special Program,No.2019SCZT08.
文摘BACKGROUND Dilated cardiomyopathy(DCM)is a genetically heterogeneous cardiac disorder characterized by left ventricular dilation and contractile dysfunction.The substantial genetic heterogeneity evident in patients with DCM contributes to variable disease severity and complicates overall prognosis,which can be very poor.AIM To identify pathogenic genes in DCM through pedigree analysis.METHODS Our research team identified a patient with DCM in the clinic.Through invest-igation,we found that the family of this patient has a typical DCM pedigree.High-throughput sequencing technology,next-generation sequencing,was used to sequence the whole exomes of seven samples in the pedigree.RESULTS A novel and potentially pathogenic gene mutation-ANK2p.F3067L-was discovered.The mutation was completely consistent with the clinical information for this DCM pedigree.Sanger sequencing was used to further verify the locus of the mutation in pedigree samples.These results were consistent with those of high-throughput sequencing.CONCLUSIONS ANK2p.F3067L is considered a novel and potentially pathogenic gene mutation in DCM.