In this papert we construct unconstrained methods for the generalized nonlinearcomplementarity problem and variational inequalities. Properties of the correspon-dent unconstrained optimization problem are studied. We ...In this papert we construct unconstrained methods for the generalized nonlinearcomplementarity problem and variational inequalities. Properties of the correspon-dent unconstrained optimization problem are studied. We apply these methods tothe subproblems in trust region method, and study their interrelationships. Nu-merical results are also presented.展开更多
Consider a discrete time dynamical system x_(k+1)=f(x_k) on a compact metric space M, wheref: M→M is a continuous map. Let h:M→R^k be a continuous output function. Suppose that all ofthe positive orbits of f are den...Consider a discrete time dynamical system x_(k+1)=f(x_k) on a compact metric space M, wheref: M→M is a continuous map. Let h:M→R^k be a continuous output function. Suppose that all ofthe positive orbits of f are dense and that the system is observable. We prove that any outputtrajectory of the system determines f and h and M up to a homeomorphism.If M is a compactAbelian topological group and f is an ergodic translation, then any output trajectory determinesthe system up to a translation and a group isomorphism of the group.展开更多
文摘In this papert we construct unconstrained methods for the generalized nonlinearcomplementarity problem and variational inequalities. Properties of the correspon-dent unconstrained optimization problem are studied. We apply these methods tothe subproblems in trust region method, and study their interrelationships. Nu-merical results are also presented.
文摘Consider a discrete time dynamical system x_(k+1)=f(x_k) on a compact metric space M, wheref: M→M is a continuous map. Let h:M→R^k be a continuous output function. Suppose that all ofthe positive orbits of f are dense and that the system is observable. We prove that any outputtrajectory of the system determines f and h and M up to a homeomorphism.If M is a compactAbelian topological group and f is an ergodic translation, then any output trajectory determinesthe system up to a translation and a group isomorphism of the group.