期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
FAO-PM法估算季节性冰冻地区路基土潜在蒸发蒸腾量 被引量:1
1
作者 李冬雪 孙宗元 李聪 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第4期62-70,86,共10页
为准确估算东北东部山地润湿冻区(Ⅱ_(1)区)路基土平衡湿度,引入联合国粮农组织Penman-Monteith法(FAO-PM)估算气候因素控制型路基土潜在蒸发蒸腾量,以解决Thornthwaite法在负温时潜在蒸发蒸腾量计算值为0的问题。详细阐述了FAO-PM模型... 为准确估算东北东部山地润湿冻区(Ⅱ_(1)区)路基土平衡湿度,引入联合国粮农组织Penman-Monteith法(FAO-PM)估算气候因素控制型路基土潜在蒸发蒸腾量,以解决Thornthwaite法在负温时潜在蒸发蒸腾量计算值为0的问题。详细阐述了FAO-PM模型中5个气候因素的具体含义,并给出算例说明计算流程;根据Ⅱ_(1)区内6个气象台站月均气象数据计算得到各地路基土潜在蒸发蒸腾量;分析主要气候因素对路基土潜在蒸发蒸腾量的影响规律与程度。研究表明:Ⅱ_(1)区各地路基土全年潜在蒸发蒸腾总量为71.14~87.37 cm,负温时该值为8.27~12.39 cm,占全年总量的9.8%~15.7%;潜在蒸发蒸腾量与各地平均气温的显著正相关关系可在一定程度上削弱与其他气候因素的负相关关系;负温条件下,路基的潜在蒸发蒸腾量与平均气温、平均风速和平均日照时数呈正比,与平均相对湿度呈反比;FAO-PM法估算的逐月潜在蒸发蒸腾量与气象站实测数据的误差范围为0.47~13.22 cm,负温时误差范围为0.47~4.31 cm。因此,FAO-PM法适用于估算公路自然区划Ⅱ_(1)区路基土潜在蒸发蒸腾量,且具有可接受的估算误差。 展开更多
关键词 道路工程 潜在蒸发蒸腾量 fao-pm 路基 山地润湿冻区(Ⅱ_(1)区)
下载PDF
邢台夏玉米需水量时空分布特征及气象影响因子 被引量:2
2
作者 贾秋兰 王小娟 +3 位作者 赵玉兵 徐文斌 高祺 刘胜尧 《干旱地区农业研究》 CSCD 北大核心 2019年第5期243-248,共6页
选取邢台地区17个国家气象观测站1972—2014年的逐日气象资料,采用联合国粮食与农业组织(FAO)推荐的Penmen-Monteith公式及作物系数法,计算了夏玉米全生育期和各生育阶段的需水量;运用线性趋势分析、相关系数、Morlet小波、空间插值等... 选取邢台地区17个国家气象观测站1972—2014年的逐日气象资料,采用联合国粮食与农业组织(FAO)推荐的Penmen-Monteith公式及作物系数法,计算了夏玉米全生育期和各生育阶段的需水量;运用线性趋势分析、相关系数、Morlet小波、空间插值等方法分析了需水量的时空分布特征及气象影响因子。结果表明:1972—2014年,夏玉米需水量呈下降趋势,年趋势减少量为1.01 mm;夏玉米需水量存在23~32,12~15,3~6 a的周期变化规律,其中23~32 a的周期最稳定;夏玉米需水量在空间上呈现出东部最大,西部次之,中部最少的分布特征;夏玉米需水量和气象因子的关系密切,其中日照时数和需水量呈最大正相关,水汽压呈最大负相关。 展开更多
关键词 夏玉米 需水量 时空分布 气象影响因子 fao-pm公式 邢台
下载PDF
普洱市近59a参考作物蒸散量时空变化特征 被引量:1
3
作者 郭晓梅 刘姝岩 +1 位作者 陈卓 范可 《科学技术与工程》 北大核心 2019年第35期87-94,共8页
利用普洱市地面气象观测站1959~2017年逐日气象资料,采用FAO 56-Penman-Monteith(FAO-PM)法、距平分析、回归分析和地理信息技术研究了普洱市参考作物蒸散量(reference crop evapotranspiration,ET0)的年代际、年际和年内不同时间尺度... 利用普洱市地面气象观测站1959~2017年逐日气象资料,采用FAO 56-Penman-Monteith(FAO-PM)法、距平分析、回归分析和地理信息技术研究了普洱市参考作物蒸散量(reference crop evapotranspiration,ET0)的年代际、年际和年内不同时间尺度下时空变化特征。结果表明:普洱市平均ET0年代均值2011~2017年最大,为1196.2 mm,1959~1960年最小,为1101.0 mm;ET0年代均值高值区在普洱西部南侧,低值区在普洱西部西盟北侧、北部景东以北及东南部江城东部边缘。普洱市各气象站ET0年际变化均呈波动性上升趋势,其中西盟站平均ET0年值年际波动最大,江城站ET0年值年际波动最小。多年平均ET0年值空间分布景东、江城、澜沧以西北地区较小,孟连和澜沧的南部较大。各气象站ET0季节均值春季最大,夏季次之,秋、冬季逐渐减小,各气象站多年ET0月均值的变化趋势基本一致,曲线均为双峰型,最高峰值出现在4、5月,第二峰值出现在8、9月。 展开更多
关键词 参考作物蒸散量(ET0) FAO 56-Penman-Monteith(fao-pm)法 时空变化 普洱市
下载PDF
Rainfall Distribution Functions for Irrigation Scheduling: Calculation Procedures Following Site of Olive (<i>Olea europaea</i>L.) Cultivation and Growing Periods
4
作者 Chiraz Masmoudi-Charfi Hamadi Habaieb 《American Journal of Plant Sciences》 2014年第13期2094-2133,共40页
In Tunisia (36.5oN, 10.2oE, Alt.10 m), rainfall is the major factor govering olive production. Annual and seasonal falls are variable following years and regions, making yields of olive trees fluctuating consistently.... In Tunisia (36.5oN, 10.2oE, Alt.10 m), rainfall is the major factor govering olive production. Annual and seasonal falls are variable following years and regions, making yields of olive trees fluctuating consistently. Irrigation was applied since the 70th in the intensive olive orchards to improve and stabilize olive production. This study aimed to determine the crop water needs of olive orchards and the rainfall frequencies at which they are covered following age and site of olive production. For this purpose, the rainfall distribution functions were established for different cities of Tunisia (Tunis, Bizerte, Béja, Nabeul, Sidi Bouzid, Gabes and Sousse). For all sites and growing periods, the reference evapotranspiration (ET0) was computed by using several methods. Their performance against the PM-ET0 (Penman-Monteith) estimates was evaluated graphically and statistically for a better adaptation them to the existing environmental conditions, particularly when data are missing to compute ET0-PM. Results show that ET0 estimates strongly correlate with ET0-PM with r values of up to 0.88. Particularly, the methods of Turc and Ivanov appropriately predict the ET0-PM in all climatic regions of Tunisia, constituing an appropriate alternative for determining ET0 when data are missing to compute ET0-PM. However, although the Turc method performs well with all climatic zones of Tunisia, the Ivanov method appears to be more appropriate to the northern areas (Béja and Bizerte), though a poorer agreement was found when using the Eagleman method. Estimates of ET0 by using the Hargreave-Samani (HS) formula for the east-southern area (Gabes, arid climate) show satisfactory agreement with ET0-PM estimates. It appears also that at a given site, the most appropriate method for ET0 estimation at annual scale may be different from that giving the best value of ET0 when considering the growing stages of the olive tree, for example, the method of Turc, although it was appropriate when estimating the annual ET0 value for Sousse, it wasn’t adequate at seasonal scale. In opposite, although the method of BC is suitable for stages 1, 2, 4 and 5 at Sousse, the appropriate method for the overall cycle is that of Turc. This indicates that there is no weather-based evapotranspiration equation that can be expected to predict evapotranspiration perfectly under every climatic situation due to simplification in formulation and errors in data measurement. However, we can say that when data are missing, ET0 can be estimated with a specific formula;that of Turc can be appropriately used for Tunis, Sidi Bouzid, Sousse and Béja at annual scale despite of their appartenance to different climatic regions, while the method of Ivanov is quite valuable for Bizerte and Nabeul. Results show also that values of P-ETc recorded during the irrigation period are negative even for young plantations, with lowest and highest deficits observed at Béja and Gabes cities, respectively. The driest period is that of July-August for all sites with F values exceeding 0.9 in most cases. Only 10% of water needs are supplied by rainfall during this period of fruit development. Therefore, irrigation is needed all time for adult trees even at the rainiest locations. For young plantations, irrigation becomes necessary beginning from the second period of tree development, i.e. April-June for Bizerte, Béja, Nabeul and Tunis and since the early spring period for both young and old plants for Gabes and Sidi-Bouzid. It appears from this analyze based on the seasonal rainfall frequencies and water needs computed with the PM-method, that there is a need for irrigating olive plantations aging more than 5 years in most case studies and especially when olive is cultivated in the western areas of Tunisia. Results indicate also that the use of no adequate method to estimate ET0 allowed overestimating or underestimating of irrigation water needs. So it is desirable to have for Tunisia a method that estimates ET consistently well and future research is needed to reconcile which should be the standard method of calculating the change in the crop coefficient over time. However, despite a quite good performance of the PM-equation in most applications, particularly when it is used for irrigation scheduling purposes, some problems may appear because of lack of local information on Kc-values and determination of the effective rainfall. Additional research is needed on developing crop coefficients that use the Penman-Monteith equation when calculating ET. In conclusion we can say that on the basis of the results produced, we can decide for each region and growing period if complementary irrigation is needed or not. Indicative amounts are given for each case study. 展开更多
关键词 Methods of ET0 Computation fao-pm Method Climatic Water DEFICIT Irrigation Application Rainfall Frequency
下载PDF
公路自然区划Ⅱ_(1)区路基湿度指数优化算法
5
作者 李冬雪 李聪 +1 位作者 何兆益 凌建明 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2021年第9期116-125,共10页
为了提高公路自然区划Ⅱ_(1)区路基湿度指数计算精度,建立一种路基湿度指数优化计算方法,其采用FAO⁃PM法取代Thornthwaite法来估算路基土月均潜在蒸发蒸腾量(potential evapotranspiration,PE),以解决后者对路基土在负温条件下蒸发蒸腾... 为了提高公路自然区划Ⅱ_(1)区路基湿度指数计算精度,建立一种路基湿度指数优化计算方法,其采用FAO⁃PM法取代Thornthwaite法来估算路基土月均潜在蒸发蒸腾量(potential evapotranspiration,PE),以解决后者对路基土在负温条件下蒸发蒸腾量计算值为零的问题。在分析了各气象参数对路基土月均潜在蒸发蒸腾量的影响规律的基础上,验证了新方法的适用性并简化了路基湿度平衡计算的流程。针对路基湿度的季节性变化特征,提出了阶段湿度指数计算方法,并细化了Ⅱ_(1)区三级划分区域的路基湿度指数取值范围。结果表明:在负温条件下,路基的月均潜在蒸发蒸腾量在与平均日照时数、平均气温和平均风速正相关的同时,与平均相对湿度负相关,并且总潜在蒸发蒸腾量占全年总量的9.8%~15.7%;路基湿度平衡后的状态可简化为有径流、无径流不干旱和无径流干旱3种,并可采用4阶段湿度指数对其最不利季节进行判别;对于所研究的7个气象站,不同土组的湿度指数计算最小值为-16.5,最大值为33.2,这与现行规范推荐值(-8.1~35.1)相比,不仅数值整体偏小、路基湿度状态更偏干旱,而且自西南向东北逐渐降低。采用该方法可有效计算Ⅱ_(1)区负温下土壤蒸发蒸腾量,并进而确保对路基湿度指数估算的精度。 展开更多
关键词 道路工程 湿度指数 FAO⁃PM法 路基 公路自然区划Ⅱ_(1)区 湿度平衡
下载PDF
高分一号与Landsat8影像反演的参考蒸散发研究 被引量:2
6
作者 郝珈纬 张安兵 +1 位作者 王贺封 刘新侠 《测绘科学》 CSCD 北大核心 2018年第11期103-110,124,共9页
针对高分一号影像在参考蒸散发遥感反演中应用较少的问题,该文基于国产16m分辨率的高分一号多光谱影像及Landsat8影像及对应时间气象数据,采用国际上应用较广的FAO-PM模型、Priestley-Taylor模型两种方法,对2014年5月6日邯郸市研究区域... 针对高分一号影像在参考蒸散发遥感反演中应用较少的问题,该文基于国产16m分辨率的高分一号多光谱影像及Landsat8影像及对应时间气象数据,采用国际上应用较广的FAO-PM模型、Priestley-Taylor模型两种方法,对2014年5月6日邯郸市研究区域内的参考蒸散发量(ET_0)进行了反演,并与只采用Landsat8影像与气象数据反演的结果进行了对比分析。结果表明,高分影像结合Landsat8影像反演的参考蒸散发结果与仅利用Landsat8影像反演的结果具有高度的线性相关性,该方法将在小区域范围内的蒸散反演具有更高的空间分辨率。实验结果证实了高分一号影像与Landsat8联合进行蒸散发反演的可行性。 展开更多
关键词 参考蒸散发 高分一号 Landsat8影像 fao-pm模型
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部