The Five-hundred-meter Aperture Spherical Radio Telescope (FAST) is supported by a cable-net structure, whose change in shape leads to a stress range of approximately 500 MPa. This stress range is more than twice th...The Five-hundred-meter Aperture Spherical Radio Telescope (FAST) is supported by a cable-net structure, whose change in shape leads to a stress range of approximately 500 MPa. This stress range is more than twice the standard recom- mended value. The cable-net structure is thus the most critical and fragile part of the FAST reflector system. In this study, we first search for a more appropriate deforma- tion strategy that reduces the stress amplitude generated by the process of changing shape. Second, we roughly estimate the tracking trajectory of the telescope during its service life, and conduct an extensive numerical investigation to assess the require- ments for fatigue resistance. Finally, we develop a new type of steel cable system that satisfies the cable requirements for construction of FAST.展开更多
[Objective]The aim was to research the effect of fast neutron irradiation on amylose content and amylopectin structure.[Method] The amylose content and amylopectin structure of the M4 plants of Thailand rice cultivar ...[Objective]The aim was to research the effect of fast neutron irradiation on amylose content and amylopectin structure.[Method] The amylose content and amylopectin structure of the M4 plants of Thailand rice cultivar Jao Hom Nin irradiated with fast neutron at 13 Gy were evaluated and analyzed in this paper.[Result]The results showed that amylose content of rice could be changed by fast neutron irradiation,many rice mutants with reduced amylose content and many others with enhanced amylose content even some mutants with amylose content near to waxy rice could be isolated,but fast neutron irradiation almost had no effect on amylopectin structure of the samples.[Conclusion]The study provided a basis for breeding rice cultivar with different amylose content in order to meet with the taste hobby of different people and the further processing of diverse rice products via the irradiation of fast neutron.展开更多
Rational architecture design has turned out to be an effective strategy in improving the electrochemical performance of electrode materials for batteries.However,an elaborate structure that could simultaneously endow ...Rational architecture design has turned out to be an effective strategy in improving the electrochemical performance of electrode materials for batteries.However,an elaborate structure that could simultaneously endow active materials with promoted reaction reversibility,accelerated kinetic and restricted volume change still remains a huge challenge.Herein,a novel chemical interaction motivated structure design strategy has been proposed,and a chemically bonded Co(CO_(3))_(0.5)OH·0.11 H_(2)O@MXene(CoCH@MXene)layered-composite was fabricated for the first time.In such a composite,the chemical interaction between Co^(2+)and MXene drives the growth of smaller-sized CoCH crystals and the subsequent formation of interwoven CoCH wires sandwiched in-between MXene nanosheets.This unique layered structure not only encourages charge transfer for faster reaction dynamics,but buffers the volume change of CoCH during lithiation-delithiation process,owing to the confined crystal growth between conductive MXene layers with the help of chemical bonding.Besides,the sandwiched interwoven CoCH wires also prevent the stacking of MXene layers,further conducive to the electrochemical performance of the composite.As a result,the as-prepared CoCH@MXene anode demonstrates a high reversible capacity(903.1 mAh g^(-1)at 100 mA g^(-1))and excellent cycling stability(maintains 733.6 mAh g^(-1)at1000 mA g^(-1)after 500 cycles)for lithium ion batteries.This work highlights a novel concept of layerby-layer chemical interaction motivated architecture design for futuristic high performance electrode materials in energy storage systems.展开更多
According to the basic idea of classical yin-yang complementarity and modem dual-complementarity, in a simple and unified new way proposed by Luo, the unconventional Hamilton-type variational principles for geometrica...According to the basic idea of classical yin-yang complementarity and modem dual-complementarity, in a simple and unified new way proposed by Luo, the unconventional Hamilton-type variational principles for geometrically nonlinear elastodynamics of orthogonal cable-net structures are established systematically, which can fully characterize the initial-boundary-value problem of this kind of dynamics. An ifnportant integral relation is made, which can be considered as the generalized principle of virtual work for geometrically nonlinear dynamics of orthogonal cable-net structures in mechanics. Based on such relationship, it is possible not only to obtain the principle of virtual work for geometrically nonlinear dynamics of orthogonal cable-net structures, but also to derive systematically the complementary functionals for five-field, four-field, three-field and two-field unconventional Hamilton-type variational principles, and the functional for the unconventional Hamilton-type variational principle in phase space and the potential energy functional for one-field unconventional Hamilton-type variational principle for geometrically nonlinear elastodynamics of orthogonal cable-net structures by the generalized Legendre transformation given in this paper, Furthermore, the intrinsic relationship among various principles can be explained clearly with this approach.展开更多
The structure and composition of coal determine its fast pyrolysis characteristics,and the study of the relationship between them can play an important role in the efficient and clean utilization of coal.So,in this wo...The structure and composition of coal determine its fast pyrolysis characteristics,and the study of the relationship between them can play an important role in the efficient and clean utilization of coal.So,in this work,hydrothermal pretreatment was used to artificially change the structure and composition of Sheng Li(SL)lignite,which was used to investigate the influence of structural changes on pyrolysis.The physicochemical structure and composition of samples were characterized by X-ray diffraction,specific surface area and porosity analyzer,solid-state 13C nuclear magnetic resonance,Fourier transform infrared spectroscopy,and elemental analyzer.Pyrolysis experiments were carried out in a powderparticle fluidized bed reactor,and the distribution and composition of the pyrolysis products were analyzed.The gasification activity of char was investigated by thermogravimetric analysis with a CO_(2) atmosphere.The results show that hydrothermal pretreatment(HTP)can destroy the cross-linking structure of SL lignite,and affect its aromaticity,pore structure,functional group,and carbon structure to change the distribution and composition of pyrolysis products of SL lignite,especially the composition of tar.Finally,the structure–activity relationship between the structure,composition,and pyrolysis characteristics of coal was comprehensively studied.展开更多
This work demonstrates the so-called PCAC (Protein principal Component Analysis Clustering) method, which clusters large-scale decoy protein structures in protein structure prediction based on principal component anal...This work demonstrates the so-called PCAC (Protein principal Component Analysis Clustering) method, which clusters large-scale decoy protein structures in protein structure prediction based on principal component analysis (PCA), is an ultra-fast and low-memory-requiring clustering method. It can be two orders of magnitude faster than the commonlyused pairwise rmsd-clustering (pRMSD) when enormous of decoys are involved. Instead of N(N – 1)/2 least-square fitting of rmsd calculations and N2 memory units to store the pairwise rmsd values in pRMSD, PCAC only requires N rmsd calculations and N × P memory storage, where N is the number of structures to be clustered and P is the number of preserved eigenvectors. Furthermore, PCAC based on the covariance Cartesian matrix generates essentially the identical result as that from the reference rmsd-clustering (rRMSD). From a test of 41 protein decoy sets, when the eigenvectors that contribute a total of 90% eigenvalues are preserved, PCAC method reproduces the results of near-native selections from rRMSD.展开更多
A hybrid method combining simplified sub-entire domain basis function method of moment with finite element method( SSED-MoM /FEM) is accelerated for electromagnetic( EM) scattering analysis of large-scale periodic str...A hybrid method combining simplified sub-entire domain basis function method of moment with finite element method( SSED-MoM /FEM) is accelerated for electromagnetic( EM) scattering analysis of large-scale periodic structures.The unknowns are reduced sharply with non-uniform mesh in FEM. The computational complexity of the hybrid method is dramatically declined by applying conjugate gradient-fast Fourier transform( CG-FFT) to the integral equations of both electric field and magnetic field. The efficiency is further improved by using OpenMP technique. Numerical results demonstrate that the SSED-MoM /FEM method can be accelerated for more than three thousand times with large-scale periodic structures.展开更多
This paper proposes an approach to extract the mode shapes of beam-like structures from the dynamic response of a moving mass. When a mass passes through a beam containing several artificially installed humps, its ver...This paper proposes an approach to extract the mode shapes of beam-like structures from the dynamic response of a moving mass. When a mass passes through a beam containing several artificially installed humps, its vertical acceleration can be recorded. After applying fast Fourier transformation to the dynamic response, one can extract the mode shapes of the beam. The surface roughness was neglected compared to the humps and its adverse effect on the extraction was reduced. The passing mass performs as both “exciter” and “massage receiver”;therefore, this method requires only one single accelerometer, making it more convenient and time saving in practice. Moreover, to estimate the possible error in extracting mode shapes, a wavenumber domain filtering technique is used to reconstruct the general profiles of mode shapes. Experimental validation of this approach in laboratory scale was conducted. The experimental results show that the proposed method performs well in extracting lower order mode shapes. It should also be noted that the passing mass can not have a very high velocity (e.g. 80 mm/s), otherwise the mass may jump and separate from the beam, and the proposed method may fail to identify mode shapes.展开更多
A new algorithm of structure random response numerical characteristics, namedas matrix algebra algorithm of structure analysis is presented. Using the algorithm, structurerandom response numerical characteristics can ...A new algorithm of structure random response numerical characteristics, namedas matrix algebra algorithm of structure analysis is presented. Using the algorithm, structurerandom response numerical characteristics can easily be got by directly solving linear matrixequations rather than structure motion differential equations. Moreover, in order to solve thecorresponding linear matrix equations, the numerical integration fast algorithm is presented. Thenaccording to the results, dynamic design and life-span estimation can be done. Besides, the newalgorithm can solve non-proportion damp structure response.展开更多
This paper presents the analysis of open microstrip structures by using diakoptic method of lines (ML) combined with periodic boundary conditions (PBC). The parameters of microstrip patch are obtained from patch curre...This paper presents the analysis of open microstrip structures by using diakoptic method of lines (ML) combined with periodic boundary conditions (PBC). The parameters of microstrip patch are obtained from patch current excited by plane wave. Impedance matrix elements are computed by using fast Fourier transform(FFT), and reduced equation is solved by using diakoptic technique. Consequently, the computing time is reduced significantly. The convergence property of simulating open structure by using PBC and the comparison of the computer time between using PBC and usual absorbing boundary condition (ABC) show the validity of the method proposed in this paper. Finally, the resonant frequency of a microstrip patch is computed. The numerical results obtained are in good agreement with those published.展开更多
The effects of plasma-induced graft copolymerization with acrylic acid (AAc) on the structure and dyeing properties of mulberry silk are investigated. Through the transmission infrared spectroscopy(IR) , attenuated to...The effects of plasma-induced graft copolymerization with acrylic acid (AAc) on the structure and dyeing properties of mulberry silk are investigated. Through the transmission infrared spectroscopy(IR) , attenuated total reflection infrared spectroscopy(ATR-IR) and X-ray photoelectron spectroscopy(XPS) studies, changes of the surface structure and composition are observed. The results show that plasma-induced graft copolymerization has a different meehanism from that of chemical graft copolymerization. The plasma graft copolymerization brings AAc branch polymers into the surface of silk through the initiation of some kinds of oxygen and nitrogen groups created by plasma. That is just the reason that the dyeing ability and color fastness of plasma-grafted silk for cationic dyestuff increase and its mechanical properties have not been changed significantly.展开更多
Based on the transfer matrix method and the virtual source simulation technique, this paper proposes a novel semi-analytical and semi-numerical method for solving 2-D sound- structure interaction problems under a harm...Based on the transfer matrix method and the virtual source simulation technique, this paper proposes a novel semi-analytical and semi-numerical method for solving 2-D sound- structure interaction problems under a harmonic excitation.Within any integration segment, as long as its length is small enough,along the circumferential curvilinear coordinate,the non- homogeneous matrix differential equation of an elastic ring of complex geometrical shape can be rewritten in terms of the homogeneous one by the method of extended homogeneous capacity proposed in this paper.For the exterior fluid domain,the multi-circular virtual source simulation technique is adopted.The source density distributed on each virtual circular curve may be ex- panded as the Fourier's series.Combining with the inverse fast Fourier transformation,a higher accuracy and efficiency method for solving 2-D exterior Helmholtz's problems is presented in this paper.In the aspect of solution to the coupling equations,the state vectors of elastic ring induced by the given harmonic excitation and generalized forces of coefficients of the Fourier series can be obtained respectively by using a high precision integration scheme combined with the method of extended homogeneous capacity put forward in this paper.According to the superposition princi- ple and compatibility conditions at the interface between the elastic ring and fluid,the algebraic equation of system can be directly constructed by using the least square approximation.Examples of acoustic radiation from two typical fluid-loaded elastic rings under a harmonic concentrated force are presented.Numerical results show that the method proposed is more efficient than the mixed FE-BE method in common use.展开更多
This paper proposes a wavelet based receiver structure for frequency-flat time-varying Rayleigh channels, consisting of a receiver front-end followed by a Maximum A-Posteriori (MAP) detector. Discretization of the rec...This paper proposes a wavelet based receiver structure for frequency-flat time-varying Rayleigh channels, consisting of a receiver front-end followed by a Maximum A-Posteriori (MAP) detector. Discretization of the received continuous time signal using filter banks is an essential stage in the front-end part, where the Fast Haar Transform (FHT) is used to reduce complexity. Analysis of our receiver over slow-fading channels shows that it is optimal for certain modulation schemes. By comparison with literature, it is shown that over such channels our receiver can achieve optimal performance for Time-Orthogonal modulation. Computed and Monte-Carlo simulated performance results over fast time-varying Rayleigh fading channels show that with Minimum Shift Keying (MSK), our receiver using four basis functions (filters) lowers the error floor by more than one order of magnitude with respect to other techniques of comparable complexity. Orthogonal Frequency Shift Keying (FSK) can achieve the same performance as Time-Orthogonal modulation for the slow-fading case, but suffers some degradation over fast-fading channels where it exhibits an error floor. Compared to MSK, however, Orthogonal FSK provides better performance.展开更多
基金supported by the Young Scientist Project of the National Natural Science Foundation of China(Grant No.11303059)the Chinese Academy of Sciences Youth Innovation Promotion Association
文摘The Five-hundred-meter Aperture Spherical Radio Telescope (FAST) is supported by a cable-net structure, whose change in shape leads to a stress range of approximately 500 MPa. This stress range is more than twice the standard recom- mended value. The cable-net structure is thus the most critical and fragile part of the FAST reflector system. In this study, we first search for a more appropriate deforma- tion strategy that reduces the stress amplitude generated by the process of changing shape. Second, we roughly estimate the tracking trajectory of the telescope during its service life, and conduct an extensive numerical investigation to assess the require- ments for fatigue resistance. Finally, we develop a new type of steel cable system that satisfies the cable requirements for construction of FAST.
基金Supported by Tingthanathikul Foundation Agricultural Fellowship in Thailand for Study and Intercommunion in 2009~~
文摘[Objective]The aim was to research the effect of fast neutron irradiation on amylose content and amylopectin structure.[Method] The amylose content and amylopectin structure of the M4 plants of Thailand rice cultivar Jao Hom Nin irradiated with fast neutron at 13 Gy were evaluated and analyzed in this paper.[Result]The results showed that amylose content of rice could be changed by fast neutron irradiation,many rice mutants with reduced amylose content and many others with enhanced amylose content even some mutants with amylose content near to waxy rice could be isolated,but fast neutron irradiation almost had no effect on amylopectin structure of the samples.[Conclusion]The study provided a basis for breeding rice cultivar with different amylose content in order to meet with the taste hobby of different people and the further processing of diverse rice products via the irradiation of fast neutron.
基金financially supported by the National Natural Science Foundation of China(No.51933007,No.51673123 and No.22005346)the National Key R&D Program of China(No.2017YFE0111500)+1 种基金the State Key Laboratory of Polymer Materials Engineering(Grant No.:sklpme2020-1-02)Financial support provided by the Fundamental Research Funds for the Central Universities(No.YJ202118)。
文摘Rational architecture design has turned out to be an effective strategy in improving the electrochemical performance of electrode materials for batteries.However,an elaborate structure that could simultaneously endow active materials with promoted reaction reversibility,accelerated kinetic and restricted volume change still remains a huge challenge.Herein,a novel chemical interaction motivated structure design strategy has been proposed,and a chemically bonded Co(CO_(3))_(0.5)OH·0.11 H_(2)O@MXene(CoCH@MXene)layered-composite was fabricated for the first time.In such a composite,the chemical interaction between Co^(2+)and MXene drives the growth of smaller-sized CoCH crystals and the subsequent formation of interwoven CoCH wires sandwiched in-between MXene nanosheets.This unique layered structure not only encourages charge transfer for faster reaction dynamics,but buffers the volume change of CoCH during lithiation-delithiation process,owing to the confined crystal growth between conductive MXene layers with the help of chemical bonding.Besides,the sandwiched interwoven CoCH wires also prevent the stacking of MXene layers,further conducive to the electrochemical performance of the composite.As a result,the as-prepared CoCH@MXene anode demonstrates a high reversible capacity(903.1 mAh g^(-1)at 100 mA g^(-1))and excellent cycling stability(maintains 733.6 mAh g^(-1)at1000 mA g^(-1)after 500 cycles)for lithium ion batteries.This work highlights a novel concept of layerby-layer chemical interaction motivated architecture design for futuristic high performance electrode materials in energy storage systems.
基金Project supported by the National Natural Science Foundation of China(No.10172097)the Doctoral Foundation of Ministry of Education of China(No.20030558025)
文摘According to the basic idea of classical yin-yang complementarity and modem dual-complementarity, in a simple and unified new way proposed by Luo, the unconventional Hamilton-type variational principles for geometrically nonlinear elastodynamics of orthogonal cable-net structures are established systematically, which can fully characterize the initial-boundary-value problem of this kind of dynamics. An ifnportant integral relation is made, which can be considered as the generalized principle of virtual work for geometrically nonlinear dynamics of orthogonal cable-net structures in mechanics. Based on such relationship, it is possible not only to obtain the principle of virtual work for geometrically nonlinear dynamics of orthogonal cable-net structures, but also to derive systematically the complementary functionals for five-field, four-field, three-field and two-field unconventional Hamilton-type variational principles, and the functional for the unconventional Hamilton-type variational principle in phase space and the potential energy functional for one-field unconventional Hamilton-type variational principle for geometrically nonlinear elastodynamics of orthogonal cable-net structures by the generalized Legendre transformation given in this paper, Furthermore, the intrinsic relationship among various principles can be explained clearly with this approach.
基金supported by the National Natural Science Foundation of China(21536009)Science and Technology Plan Projects of Shaanxi Province(2017ZDCXL-GY-10-03)。
文摘The structure and composition of coal determine its fast pyrolysis characteristics,and the study of the relationship between them can play an important role in the efficient and clean utilization of coal.So,in this work,hydrothermal pretreatment was used to artificially change the structure and composition of Sheng Li(SL)lignite,which was used to investigate the influence of structural changes on pyrolysis.The physicochemical structure and composition of samples were characterized by X-ray diffraction,specific surface area and porosity analyzer,solid-state 13C nuclear magnetic resonance,Fourier transform infrared spectroscopy,and elemental analyzer.Pyrolysis experiments were carried out in a powderparticle fluidized bed reactor,and the distribution and composition of the pyrolysis products were analyzed.The gasification activity of char was investigated by thermogravimetric analysis with a CO_(2) atmosphere.The results show that hydrothermal pretreatment(HTP)can destroy the cross-linking structure of SL lignite,and affect its aromaticity,pore structure,functional group,and carbon structure to change the distribution and composition of pyrolysis products of SL lignite,especially the composition of tar.Finally,the structure–activity relationship between the structure,composition,and pyrolysis characteristics of coal was comprehensively studied.
文摘This work demonstrates the so-called PCAC (Protein principal Component Analysis Clustering) method, which clusters large-scale decoy protein structures in protein structure prediction based on principal component analysis (PCA), is an ultra-fast and low-memory-requiring clustering method. It can be two orders of magnitude faster than the commonlyused pairwise rmsd-clustering (pRMSD) when enormous of decoys are involved. Instead of N(N – 1)/2 least-square fitting of rmsd calculations and N2 memory units to store the pairwise rmsd values in pRMSD, PCAC only requires N rmsd calculations and N × P memory storage, where N is the number of structures to be clustered and P is the number of preserved eigenvectors. Furthermore, PCAC based on the covariance Cartesian matrix generates essentially the identical result as that from the reference rmsd-clustering (rRMSD). From a test of 41 protein decoy sets, when the eigenvectors that contribute a total of 90% eigenvalues are preserved, PCAC method reproduces the results of near-native selections from rRMSD.
基金Supported by the Aeronautical Science Foundation of China(20121852031)
文摘A hybrid method combining simplified sub-entire domain basis function method of moment with finite element method( SSED-MoM /FEM) is accelerated for electromagnetic( EM) scattering analysis of large-scale periodic structures.The unknowns are reduced sharply with non-uniform mesh in FEM. The computational complexity of the hybrid method is dramatically declined by applying conjugate gradient-fast Fourier transform( CG-FFT) to the integral equations of both electric field and magnetic field. The efficiency is further improved by using OpenMP technique. Numerical results demonstrate that the SSED-MoM /FEM method can be accelerated for more than three thousand times with large-scale periodic structures.
文摘This paper proposes an approach to extract the mode shapes of beam-like structures from the dynamic response of a moving mass. When a mass passes through a beam containing several artificially installed humps, its vertical acceleration can be recorded. After applying fast Fourier transformation to the dynamic response, one can extract the mode shapes of the beam. The surface roughness was neglected compared to the humps and its adverse effect on the extraction was reduced. The passing mass performs as both “exciter” and “massage receiver”;therefore, this method requires only one single accelerometer, making it more convenient and time saving in practice. Moreover, to estimate the possible error in extracting mode shapes, a wavenumber domain filtering technique is used to reconstruct the general profiles of mode shapes. Experimental validation of this approach in laboratory scale was conducted. The experimental results show that the proposed method performs well in extracting lower order mode shapes. It should also be noted that the passing mass can not have a very high velocity (e.g. 80 mm/s), otherwise the mass may jump and separate from the beam, and the proposed method may fail to identify mode shapes.
基金This project is supported by National Natural Science Foundation of China (No.59805001)
文摘A new algorithm of structure random response numerical characteristics, namedas matrix algebra algorithm of structure analysis is presented. Using the algorithm, structurerandom response numerical characteristics can easily be got by directly solving linear matrixequations rather than structure motion differential equations. Moreover, in order to solve thecorresponding linear matrix equations, the numerical integration fast algorithm is presented. Thenaccording to the results, dynamic design and life-span estimation can be done. Besides, the newalgorithm can solve non-proportion damp structure response.
基金Supported by the National Natural Science Foundation of China
文摘This paper presents the analysis of open microstrip structures by using diakoptic method of lines (ML) combined with periodic boundary conditions (PBC). The parameters of microstrip patch are obtained from patch current excited by plane wave. Impedance matrix elements are computed by using fast Fourier transform(FFT), and reduced equation is solved by using diakoptic technique. Consequently, the computing time is reduced significantly. The convergence property of simulating open structure by using PBC and the comparison of the computer time between using PBC and usual absorbing boundary condition (ABC) show the validity of the method proposed in this paper. Finally, the resonant frequency of a microstrip patch is computed. The numerical results obtained are in good agreement with those published.
文摘The effects of plasma-induced graft copolymerization with acrylic acid (AAc) on the structure and dyeing properties of mulberry silk are investigated. Through the transmission infrared spectroscopy(IR) , attenuated total reflection infrared spectroscopy(ATR-IR) and X-ray photoelectron spectroscopy(XPS) studies, changes of the surface structure and composition are observed. The results show that plasma-induced graft copolymerization has a different meehanism from that of chemical graft copolymerization. The plasma graft copolymerization brings AAc branch polymers into the surface of silk through the initiation of some kinds of oxygen and nitrogen groups created by plasma. That is just the reason that the dyeing ability and color fastness of plasma-grafted silk for cationic dyestuff increase and its mechanical properties have not been changed significantly.
基金Project supported by the National Natural Science Foundation of China (No.10172038)
文摘Based on the transfer matrix method and the virtual source simulation technique, this paper proposes a novel semi-analytical and semi-numerical method for solving 2-D sound- structure interaction problems under a harmonic excitation.Within any integration segment, as long as its length is small enough,along the circumferential curvilinear coordinate,the non- homogeneous matrix differential equation of an elastic ring of complex geometrical shape can be rewritten in terms of the homogeneous one by the method of extended homogeneous capacity proposed in this paper.For the exterior fluid domain,the multi-circular virtual source simulation technique is adopted.The source density distributed on each virtual circular curve may be ex- panded as the Fourier's series.Combining with the inverse fast Fourier transformation,a higher accuracy and efficiency method for solving 2-D exterior Helmholtz's problems is presented in this paper.In the aspect of solution to the coupling equations,the state vectors of elastic ring induced by the given harmonic excitation and generalized forces of coefficients of the Fourier series can be obtained respectively by using a high precision integration scheme combined with the method of extended homogeneous capacity put forward in this paper.According to the superposition princi- ple and compatibility conditions at the interface between the elastic ring and fluid,the algebraic equation of system can be directly constructed by using the least square approximation.Examples of acoustic radiation from two typical fluid-loaded elastic rings under a harmonic concentrated force are presented.Numerical results show that the method proposed is more efficient than the mixed FE-BE method in common use.
文摘This paper proposes a wavelet based receiver structure for frequency-flat time-varying Rayleigh channels, consisting of a receiver front-end followed by a Maximum A-Posteriori (MAP) detector. Discretization of the received continuous time signal using filter banks is an essential stage in the front-end part, where the Fast Haar Transform (FHT) is used to reduce complexity. Analysis of our receiver over slow-fading channels shows that it is optimal for certain modulation schemes. By comparison with literature, it is shown that over such channels our receiver can achieve optimal performance for Time-Orthogonal modulation. Computed and Monte-Carlo simulated performance results over fast time-varying Rayleigh fading channels show that with Minimum Shift Keying (MSK), our receiver using four basis functions (filters) lowers the error floor by more than one order of magnitude with respect to other techniques of comparable complexity. Orthogonal Frequency Shift Keying (FSK) can achieve the same performance as Time-Orthogonal modulation for the slow-fading case, but suffers some degradation over fast-fading channels where it exhibits an error floor. Compared to MSK, however, Orthogonal FSK provides better performance.