Pressure sensors are the essential equipments in the field of pressure measurement. In this work, we propose a temperature compensation fiber Bragg grating (FBG) pressure sensor based on the plane diaphragm. The pla...Pressure sensors are the essential equipments in the field of pressure measurement. In this work, we propose a temperature compensation fiber Bragg grating (FBG) pressure sensor based on the plane diaphragm. The plane diaphragm and pressure sensitivity FBG (PS FBG) are used as the pressure sensitive components, and the temperature compensation FBG (TC FBG) is used to improve the temperature cross-sensitivity. Mechanical deformation model and deformation characteristics simulation analysis of the diaphragm are presented. The measurement principle and theoretical analysis of the mathematical relationship between the FBG central wavelength shift and pressure of the sensor are introduced. The sensitivity and measure range can be adjusted by utilizing the different materials and sizes of the diaphragm to accommodate different measure environments. The performance experiments are carried out, and the results indicate that the pressure sensitivity of the sensor is 35.7pm/MPa in a range from 0MPa to 50MPa and has good linearity with a linear fitting correlation coefficient of 99.95%. In addition, the sensor has the advantages of low frequency chirp and high stability, which can be used to measure pressure in mining engineering, civil engineering, or other complex environment.展开更多
Based on the principle of the fiber Bragg grating, a new type of fiber-optic pressure sensor for axial force measurement of transformer winding is designed, which is designed with the structure of bending plate beam, ...Based on the principle of the fiber Bragg grating, a new type of fiber-optic pressure sensor for axial force measurement of transformer winding is designed, which is designed with the structure of bending plate beam, the optimization of the packaging process, and material of the sensor. Through the calibration experiment to calibrate the sensor, the field test results of the Taikai transformer factory show that the sensitivity of the sensor is 0.133 pm/kPa and the repeatability error is 2.7%FS. The data of the fiber-optic pressure sensor in different positions maintain consistent and repeatable, which can meet the requirement of the real-time monitoring of the axial force of transformer winding.展开更多
A novel fiber Bragg grating (FBG) pressure sensor with the enhanced sensitivity has been demonstrated. A piston-like diaphragm with a hard core in the center is used to enhance the sensitivity. Both the theoretical ...A novel fiber Bragg grating (FBG) pressure sensor with the enhanced sensitivity has been demonstrated. A piston-like diaphragm with a hard core in the center is used to enhance the sensitivity. Both the theoretical analysis and the experimental result show that the radius of the hard core has significant effect on the pressure sensitivity. When the radius of the hard core is 1.5 mm, a pressure sensitivity of 7.23 nm/MPa has been achieved.展开更多
An active temperature compensated fiber Bragg grating(FBG)vibration sensor with a constant section cantilever beam is proposed for the simultaneous measurement of temperature and vibration,and the sensor is verified b...An active temperature compensated fiber Bragg grating(FBG)vibration sensor with a constant section cantilever beam is proposed for the simultaneous measurement of temperature and vibration,and the sensor is verified by a temperature compensation feedback system.The high-temperature vibration sensor is composed of a quartz cantilever beam and a femtosecond Bragg grating.The feedback control demodulation system of active temperature compensation can adjust the laser wavelength to stabilize the grating offset point and realize simultaneous measurement of temperature and vibration.On this basis,the performance of the sensor is tested and analyzed within the range of 20-400℃by setting up a high-temperature vibration test system.The experimental results show that the sensitivity of the sensor is about 132.33 mV/g,and the nonlinearity is about 3.33%.The sensitivity between the laser wavelength and temperature is about 0.01307 nm/℃.In addition,the active temperature compensated fiber Bragg grating vibration sensor has the advantages of a simple structure,stable performance,easy demodulation and high sensitivity.Moreover,the sensor can achieve high temperature vibration signal monitoring and has good practical application value.展开更多
We report a fiber Bragg grating(FBG)-based sensor for the simultaneous measurement of a train bearing’s vibration and temperature. A pre-stretched optical fiber with an FBG and a mass is designed for axial vibratio...We report a fiber Bragg grating(FBG)-based sensor for the simultaneous measurement of a train bearing’s vibration and temperature. A pre-stretched optical fiber with an FBG and a mass is designed for axial vibration sensing. Another multiplexed FBG is embedded in a selected copper-based alloy with a high thermal expansion to detect temperature. Experiments show that the sensor possesses a high resonant frequency of 970 Hz, an acceleration sensitivity of 27.28 pm/g, and a high temperature sensitivity of 35.165 pm/℃. A resonant excitation test is also carried out that demonstrates the robustness and reliability of the sensor.展开更多
In view of the principle for occurrence of cross-sensitivity, a series of calibration experiments are carried out to solve the cross-sensitivity problem of embedded fiber Bragg gratings(FBGs) using the reference grati...In view of the principle for occurrence of cross-sensitivity, a series of calibration experiments are carried out to solve the cross-sensitivity problem of embedded fiber Bragg gratings(FBGs) using the reference grating method. Moreover, an ultrasonic-vibration-assisted grinding(UVAG) model is established, and finite element analysis(FEA) is carried out under the monitoring environment of embedded temperature measurement system. In addition, the related temperature acquisition tests are set in accordance with requirements of the reference grating method. Finally, comparative analyses of the simulation and experimental results are performed, and it may be concluded that the reference grating method may be utilized to effectively solve the cross-sensitivity of embedded FBGs.展开更多
In this paper, the spectrum shift properties of the center reflection wavelength detected to be based on the FBG sensor with ambient temperature change. The basic theoretical methods and numerical simulation for the s...In this paper, the spectrum shift properties of the center reflection wavelength detected to be based on the FBG sensor with ambient temperature change. The basic theoretical methods and numerical simulation for the spectral properties of uniform Bragg grating is analyzed by using coupling mode theory which is optical properties of high sensitivity fiber Bragg grating on temperature sensor in accordance with experiment.展开更多
文摘Pressure sensors are the essential equipments in the field of pressure measurement. In this work, we propose a temperature compensation fiber Bragg grating (FBG) pressure sensor based on the plane diaphragm. The plane diaphragm and pressure sensitivity FBG (PS FBG) are used as the pressure sensitive components, and the temperature compensation FBG (TC FBG) is used to improve the temperature cross-sensitivity. Mechanical deformation model and deformation characteristics simulation analysis of the diaphragm are presented. The measurement principle and theoretical analysis of the mathematical relationship between the FBG central wavelength shift and pressure of the sensor are introduced. The sensitivity and measure range can be adjusted by utilizing the different materials and sizes of the diaphragm to accommodate different measure environments. The performance experiments are carried out, and the results indicate that the pressure sensitivity of the sensor is 35.7pm/MPa in a range from 0MPa to 50MPa and has good linearity with a linear fitting correlation coefficient of 99.95%. In addition, the sensor has the advantages of low frequency chirp and high stability, which can be used to measure pressure in mining engineering, civil engineering, or other complex environment.
基金This work was partly supported by the Natural Science Fund Plan of Shandong Province (No. 2016ZRC01104) and Natural Science Foundation Doctoral Fund of Shandong Province (No. ZR2016FB03).
文摘Based on the principle of the fiber Bragg grating, a new type of fiber-optic pressure sensor for axial force measurement of transformer winding is designed, which is designed with the structure of bending plate beam, the optimization of the packaging process, and material of the sensor. Through the calibration experiment to calibrate the sensor, the field test results of the Taikai transformer factory show that the sensitivity of the sensor is 0.133 pm/kPa and the repeatability error is 2.7%FS. The data of the fiber-optic pressure sensor in different positions maintain consistent and repeatable, which can meet the requirement of the real-time monitoring of the axial force of transformer winding.
基金the Key Projects Program of Chinese Academy of Sciences under Grant No.KGCX1-SW-10.
文摘A novel fiber Bragg grating (FBG) pressure sensor with the enhanced sensitivity has been demonstrated. A piston-like diaphragm with a hard core in the center is used to enhance the sensitivity. Both the theoretical analysis and the experimental result show that the radius of the hard core has significant effect on the pressure sensitivity. When the radius of the hard core is 1.5 mm, a pressure sensitivity of 7.23 nm/MPa has been achieved.
基金National Natural Science Foundation of China(No.51935011)Natural Science Foundation of Shanxi Province of China(No.201901D111160)Innovative Research Group Project of National Science Foundation of China(No.51821003)。
文摘An active temperature compensated fiber Bragg grating(FBG)vibration sensor with a constant section cantilever beam is proposed for the simultaneous measurement of temperature and vibration,and the sensor is verified by a temperature compensation feedback system.The high-temperature vibration sensor is composed of a quartz cantilever beam and a femtosecond Bragg grating.The feedback control demodulation system of active temperature compensation can adjust the laser wavelength to stabilize the grating offset point and realize simultaneous measurement of temperature and vibration.On this basis,the performance of the sensor is tested and analyzed within the range of 20-400℃by setting up a high-temperature vibration test system.The experimental results show that the sensitivity of the sensor is about 132.33 mV/g,and the nonlinearity is about 3.33%.The sensitivity between the laser wavelength and temperature is about 0.01307 nm/℃.In addition,the active temperature compensated fiber Bragg grating vibration sensor has the advantages of a simple structure,stable performance,easy demodulation and high sensitivity.Moreover,the sensor can achieve high temperature vibration signal monitoring and has good practical application value.
基金supported in part by the National Natural Science Foundation of China(Nos.51605348 and 51605344)in part by the Natural Science Foundation of the Hubei Province(No.2016CFB116)in part by the Open Research Fund of the Hubei Digital Manufacturing Key Laboratory(No.SZ1801)
文摘We report a fiber Bragg grating(FBG)-based sensor for the simultaneous measurement of a train bearing’s vibration and temperature. A pre-stretched optical fiber with an FBG and a mass is designed for axial vibration sensing. Another multiplexed FBG is embedded in a selected copper-based alloy with a high thermal expansion to detect temperature. Experiments show that the sensor possesses a high resonant frequency of 970 Hz, an acceleration sensitivity of 27.28 pm/g, and a high temperature sensitivity of 35.165 pm/℃. A resonant excitation test is also carried out that demonstrates the robustness and reliability of the sensor.
基金supported by the Science and Technology Department of Hubei Province in China(No.2015BAA022)
文摘In view of the principle for occurrence of cross-sensitivity, a series of calibration experiments are carried out to solve the cross-sensitivity problem of embedded fiber Bragg gratings(FBGs) using the reference grating method. Moreover, an ultrasonic-vibration-assisted grinding(UVAG) model is established, and finite element analysis(FEA) is carried out under the monitoring environment of embedded temperature measurement system. In addition, the related temperature acquisition tests are set in accordance with requirements of the reference grating method. Finally, comparative analyses of the simulation and experimental results are performed, and it may be concluded that the reference grating method may be utilized to effectively solve the cross-sensitivity of embedded FBGs.
基金Supported by Beijing Educational Committee Foundation (Km200310005022) and (00KG040)
文摘In this paper, the spectrum shift properties of the center reflection wavelength detected to be based on the FBG sensor with ambient temperature change. The basic theoretical methods and numerical simulation for the spectral properties of uniform Bragg grating is analyzed by using coupling mode theory which is optical properties of high sensitivity fiber Bragg grating on temperature sensor in accordance with experiment.