The welding of aluminum(Al)and steel has attracted more and more interest due to the weight reduction trend in vehicle and aerospace manufacturing industries.5182-O/HC260YD+Z lap joint was produced by friction stir we...The welding of aluminum(Al)and steel has attracted more and more interest due to the weight reduction trend in vehicle and aerospace manufacturing industries.5182-O/HC260YD+Z lap joint was produced by friction stir welding(FSW),and the microstructure and mechanical property of the joint were systemically characterized.The microstructure in horizontal direction of the Al and steel near interface was similar to their corresponding conventional friction stir welded joint.The joint was divided into stir zone of Al(ST-Al),stir zone of interface(ST-I),thermal-mechanically affected zone of steel(TMAZ-Fe)and base material of steel(BM-Fe)according to their distinct microstructure vertically.Three kinds of intermetallic compounds(IMCs)of FeAl_(3),FeAl and Fe_(3)Al were formed at the interface.The horizontal micro hardness distribution exhibited a hat shape and“M”shape in Al and steel,respectively.The hardest region of the joint was located at the ST-I,with a hardness of 175 HV−210 HV.The joint was fractured along the hook structure,with an average shear strength of 73.9 MPa.Fractural morphology of Al and steel indicted a cleavage fracture mode.展开更多
The complex bridge-track interaction between kilometer-span bridges and continuous Welded Rail(CWR)brings great challenges to CWR designing.Taking a suspension bridge with laying CWR as a case,the mechanical propertie...The complex bridge-track interaction between kilometer-span bridges and continuous Welded Rail(CWR)brings great challenges to CWR designing.Taking a suspension bridge with laying CWR as a case,the mechanical properties of CWR on the bridge are analyzed to reveal the sensitive areas of the track,and the design method of CWR and track structures on the beam ends are proposed.The results show that the unidirectional Rail Expansion Joints(REJ)need to be installed on the beam end of the kilometer-span bridge to reduce rail longitudinal force.Due to the bridge characteristics,there is no CWR fixed area on the kilometer-span bridge,and rail longitudinal force on the main span caused by bending loads needs to be concerned.The deformation of track on the beam end is complex,which is the weak area on the kilometer bridge,the large relative displacement between the stock rail of REJ and the main beam can cause poor stability of ballast bed on beam end,small resistance fasteners need to be laid on the sides of stock rail on the main beam to increase the stability of ballast and fasteners on the beam end.To improve the driving safety and comfort of beam end,the Sleeper-Supporting Apparatus(SSA)should be specially designed to ensure the uniform transition of track on beam ends.Temperature and wind loads have a significant impact on track regularity on the kilometer span bridge,the dynamic response of trains and bridges under those loads needs to be attended to.展开更多
The microstructure evolution and high-temperature mechanical properties of laser beam welded TC4/TA15 dissimilar titanium alloy joints under different welding parameters were studied.The results show that the weld fus...The microstructure evolution and high-temperature mechanical properties of laser beam welded TC4/TA15 dissimilar titanium alloy joints under different welding parameters were studied.The results show that the weld fusion zone of TC4/TA15 dissimilar welded joints consists of coarsenedβcolumnar crystals that contain mainly acicularα’martensite.The heat affected zone is composed of the initialαphase and the transformedβstructure,and the width of heat affected zone on the TA15 side is narrower than that on the TC4 side.With increasing temperature,the yield strength and ultimate tensile strength of the TC4/TA15 dissimilar welded joints decrease and the highest plastic deformation is obtained at 800°C.The tensile strength of the dissimilar joints with different welding parameters and base material satisfies the following relation(from high to low):TA15 base material>dissimilar joints>TC4 base material.The microhardness of a cross-section of the TC4/TA15 dissimilar joints reaches a maximum at the centre of the weld and is reduced globally after heat treatment,but the microhardness distribution is not changed.An elevated temperature tensile fracture of the dissimilar joints is located on the side of the TC4 base material.Necking occurs during the tensile tests and the fracture characteristics are typical when ductility is present in the material.展开更多
The microstructure and mechanical properties of laser beam welded dissimilar joints in TC4 and TA15 titanium alloyswere investigated. The results showed that the coarse columnar grains containing a large amount of aci...The microstructure and mechanical properties of laser beam welded dissimilar joints in TC4 and TA15 titanium alloyswere investigated. The results showed that the coarse columnar grains containing a large amount of acicular α and martensite α′ werepresent in the fusion zone (FZ), some residual α phases and martensite structure were formed in the heat-affected zone (HAZ) onTC4 side, and bulk equiaxed α phase of the HAZ was on TA15 side. An asymmetrical microhardness profile across the dissimilarjoint was observed with the highest microhardness in the FZ and the lowest microhardness in TA15 BM. The orders of yield strengthand ultimate tensile strength were as follows: TC4 BM > TC4/TC4 similar joint > TA15 BM > TA15/TA15 similar joint > TC4/TA15dissimilar joint, and increased while hardening capacity and strain hardening exponent decreased with increasing strain rate from1×10?4 s?1 to 1×10?2 s?1. The TC4/TA15 dissimilar joints failed in the TA15 BM, and had characteristics of ductile fracture atdifferent strain rates.展开更多
The microstructure and mechanical properties of dissimilar pinless friction stir spot welded joint of2A12aluminum alloy and TC4titanium alloy were evaluated.The results show that the joint of Al/Ti dissimilar alloys c...The microstructure and mechanical properties of dissimilar pinless friction stir spot welded joint of2A12aluminum alloy and TC4titanium alloy were evaluated.The results show that the joint of Al/Ti dissimilar alloys can be successfully attained through pinless friction stir spot welding(FSSW).The joint can be divided into three zones(SZ,TMAZ and HAZ).The microstructure of joint in Al alloy side changes significantly but it basically has no change in Ti alloy side.At the same rotation speed,the maximum load of welded joints gradually rises with the increase in dwell time.At the same dwell time,the maximum load of the welded joint increases with the increase of the rotational speed.In addition,optimal parameters were obtained in this work,and they are rotation speed of1500r/min,plunge speed of30mm/min,plunge depth of0.3mm and dwell time of15s.The fracture mode of welded joints is interfacial shear fracture.The microhardness of the joint on the Al side distributes in a typical“W”type and is symmetry along the weld center,but the distribution of the microhardness on the Ti side has no obvious change.展开更多
Dissimilar material joining of 6008 aluminum alloy to H220 YD galvanized high strength steel was performed by resistance spot welding with especial electrodes that were a flat tip electrode against the steel surface a...Dissimilar material joining of 6008 aluminum alloy to H220 YD galvanized high strength steel was performed by resistance spot welding with especial electrodes that were a flat tip electrode against the steel surface and a domed tip electrode upon the aluminum alloy surface. An intermetallic compound layer composed of Fe2Al5 and FeAl3 was formed at the steel/ aluminum interface in the welded joint. The thickness of the intermetallic compound layer increased with increasing welding current and welding time, and the maximum thickness being 7. 0 μm was obtained at 25 kA and 300 ms. The weld nugget diameter and tensile shear load of the welded joint had increased tendencies first with increasing welding current ( 18 -22 kA) and welding time ( 50 - 300 ms), then changed little with further increasing welding current ( 22 - 25 kA) and welding time (300 -400 ms). The maximum tensile shear load reached 5.4 kN at 22 kA and 300 ms. The welded joint fractured through brittle intermetallic compound layer and aluminum alloy nugget.展开更多
In this paper, to meet the needs of studying work of dynamic mechanical properties of welded joint, the dynamic mechanical properties of welded joint were measured by means of SHPB(Split Hopkinson Pressure Bar).The dy...In this paper, to meet the needs of studying work of dynamic mechanical properties of welded joint, the dynamic mechanical properties of welded joint were measured by means of SHPB(Split Hopkinson Pressure Bar).The dynamic mechanical property's curves of every part of welded joint were obtained. For studying the dynamic behavior of mechanical heterogeneity of welded joint, important data were offered. The method of test creates a new way of studying dynamic mechanical properties of welded joint.展开更多
The dissimilar friction stir welding of pure copper/1350 aluminum alloy sheet with a thickness of 3 mm was investigated. Most of the rotating pin was inserted into the aluminum alloy side through a pin-off technique, ...The dissimilar friction stir welding of pure copper/1350 aluminum alloy sheet with a thickness of 3 mm was investigated. Most of the rotating pin was inserted into the aluminum alloy side through a pin-off technique, and sound welds were obtained at a rotation speed of 1000 r/min and a welding speed of 80 mm/min. Complicated microstructure was formed in the nugget, in which vortex-like pattern and lamella structure could be found. No intermetallic compounds were found in the nugget. The hardness distribution indicates that the hardness at the copper side of the nugget is higher than that at the aluminum alloy side, and the hardness at the bottom of the nugget is generally higher than that in other regions. The ultimate tensile strength and elongation of the dissimilar welds are 152 MPa and 6.3%, respectively. The fracture surface observation shows that the dissimilar joints fail with a ductile-brittle mixed fracture mode durin~ tensile test.展开更多
Nanoindentation method was adopted to investigate the distribution regularities of micro-mechanical properties of 2219 twin wire welded joints, thus providing the necessary theoretical basis and guidance for joint str...Nanoindentation method was adopted to investigate the distribution regularities of micro-mechanical properties of 2219 twin wire welded joints, thus providing the necessary theoretical basis and guidance for joint strengthening and improvement of welding procedure. Experimental results show that in weld zone, micro-mechanical properties are seriously uneven. Both hardness and elastic modulus distribute as uneven sandwich layers, while micro-mechanical properties in bond area are much more uniform than weld zone;In heat-affected zone of 2219 twin wire welded joint, distribution regularity of hardness is similar to elastic modulus. The average hardness in quenching zone is higher than softening zone, and the average elastic modulus in solid solution zone is slightly higher than softening zone. As far as the whole welded joint is concerned, metal in weld possesses the lowest hardness. For welded specimens without reinforcement, fracture position is the weld when tensioning. While for welded specimens with reinforcement, bond area is the poorest position with joint strength coefficient of 61%. So, it is necessary to strengthen the poor positions--weld and bond area of 2219 twin wire welded joint in order to solve joint weakening of welding this kind of alloy.展开更多
In this study, 7A52 aluminum alloy sheets of 4 mm in thickness were welded by tungsten inert gas welding using microalloying welding wires containing traces of Zr and Er. The influence of rare earth elements Zr and Er...In this study, 7A52 aluminum alloy sheets of 4 mm in thickness were welded by tungsten inert gas welding using microalloying welding wires containing traces of Zr and Er. The influence of rare earth elements Zr and Er on the microstructure and mechanical properties of the welded joints was analyzed by optical microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, hardness testing, and tensile mechanical properties testing. Systematic analyses indicate that the addition of trace amounts of Er and Zr leads to the formation of fine Al3Er, Al3Zr, and Al3(Zr,Er) phases that favor significant grain refinement in the weld zone. Besides, the tensile strength and hardness of the welded joints were obviously improved with the addition of Er and Zr, as evidenced by the increase in tensile strength and elongation by 40 MPa and 1.4%, respectively, and by the welding coefficient of 73%.展开更多
Tungsten inert gas(TIG) welding was performed on 2.7 mm thick commercial extruded AZ31 B magnesium alloy plates. We investigated the effect of post-weld heat treatment(PWHT) on the microstructure, mechanical prope...Tungsten inert gas(TIG) welding was performed on 2.7 mm thick commercial extruded AZ31 B magnesium alloy plates. We investigated the effect of post-weld heat treatment(PWHT) on the microstructure, mechanical properties and precipitated phase of the weld joints. The results showed that during the annealing treatment(200 ℃-1 h, 250 ℃-1 h, 300 ℃-1 h, 350 ℃-1 h, 400 ℃-1 h, and 450 ℃-1 h), the average grain size in the weld seam was the minimum after annealing at 400 ℃ for 1 hour, and then abnormally grew up after annealing at 450 ℃ for 1 hour. The mechanical properties enhanced when the joints were processed from 200 ℃-1 h to 400 ℃-1 h but sharply decreased with increasing annealing temperature. In contrast to the annealing treatment, solution treatment(250 ℃-10 h, 300 ℃-10 h, 350 ℃-10 h, 400 ℃-10 h, and 450 ℃-10 h) exhibited a better ductility but a slight deterioration in tensile strength. Especially speaking, no eutectic compounds(such as Mg17 Al12) were observed in the weld seam. The supersaturated Al atoms were precipitated in a coarse spherical shape dispersed in the weld seam. The precipitated Al atoms dissolved in the matrix substances at the condition(400 ℃-1 h) or(250 ℃-10 h). The solution treatment caused grain coarsening and precipitated Al atoms dissolved in the weld seam substantially, which resulted in a drop in micro-hardness at the weld seam compared to the area of the annealed joints.展开更多
The present research introduces a unique concept of scarf joint technique in friction stir welding(FSW) of aluminum alloy AA 6061-T6 plates and an investigation on weld quality.A new joint configuration with two disti...The present research introduces a unique concept of scarf joint technique in friction stir welding(FSW) of aluminum alloy AA 6061-T6 plates and an investigation on weld quality.A new joint configuration with two distinct scarf angles(75°and 60°) was considered in this study.The various aspects of welding were compared with contemporary simple square butt(SSB) joint configuration.Welding was carried out at a constant tool rotation speed(TRS),tool traverse speed(TTS) and tool tilt angle of 1100 rpm,2 mm/s and2°,respectively.The results are analyzed in terms of force and torque distribution,microstructure,macrostructure,and mechanical property perspective for different joint configurations.The study reveals the minimum amount of force and torque at 60°scarf angle joint configuration compared to that of square butt joint configuration.Macro study shows that all the joints were defect-free,and a prominent onion ring was present in the lower portion of the weld nugget(WN).Fine equiaxed grains with a minimum average grain size diameter of 6.82 μm were obtained in the WN of scarf joint configuration(SJC).The maximum ultimate tensile strength(UTS) and maximum average NZ hardness of 267 MPa and83.82 HV0.1were obtained in SJC3 at a scarf angle of 60°.It has been observed from the investigation that the joint efficiency increases from 72.5%(SSB) to 86%(SJC3) at a 60° scarf angle.This unique characteristic may lay an impetus on probable joint strength enhancement technique without increasing the production cost.展开更多
7A52 Al alloy plate aged at 105 ℃ for 8 h and then at 130 ℃ for 24 h was welded by means of TIG using Al- 6.3Mg-0.35Sc-0.1Zr-0.1Cr solder wire. Mechanical properties and microstructures of welded joint were studied....7A52 Al alloy plate aged at 105 ℃ for 8 h and then at 130 ℃ for 24 h was welded by means of TIG using Al- 6.3Mg-0.35Sc-0.1Zr-0.1Cr solder wire. Mechanical properties and microstructures of welded joint were studied. There are two obviously soft areas in the welded joint, welding seam and over-aging zone. The mechanical properties of welded joint are that σb is 358 MPa, σ0.2 is 238 MPa and δ5 is 6.6%. 75.6% of welding coefficient can be achieved. The addition of scandium leads to very significant grain refinement in the fusion zone, which results in a reduction in solidification cracking tendency. The solidification cracking isn’t observed.展开更多
Using the optical microscope, tensile test machine and micro hardness meter, the effect of heat input on the microstructure and mechanical properties in fusion welding joints of AZ31B wrought alloys was investigated s...Using the optical microscope, tensile test machine and micro hardness meter, the effect of heat input on the microstructure and mechanical properties in fusion welding joints of AZ31B wrought alloys was investigated systematically, the mechanism on joint properties losing was analyzed, and a valid method to improve joint properties of the magnesium alloy fusion welding was explored. The results show that the heat input has an obvious effect on the microstructure and properties. Under the condition of penetration, with the heat input decreasing, the crystal grain in the weld and heat affected zone (HAZ) becomes fine, the width of HAZ becomes obviously narrow, and the molding of the weld is improved, so the tensile strength and elongation are increased and the hardness of joints is improved. When the heat input reaches 60 J/mm, the high quality joints can be gained.展开更多
This paper presents studies on the microstructure and mechanical properties of AISI 316L stainless steel and AISI 4340 low-alloy steel joints formed by the Nd:YAG laser welding process. The weld microstructures and he...This paper presents studies on the microstructure and mechanical properties of AISI 316L stainless steel and AISI 4340 low-alloy steel joints formed by the Nd:YAG laser welding process. The weld microstructures and heat affected zones (HAZs) were investigated. Austenitic microstructures were observed in all of the samples. The sizes of the HAZs changed when the heat input was varied, and the 316L sides exhibited a larger HAZ. The cooling rates were calculated by measuring the solidification dendrite arm spacing. It is shown that high cooling rates lead to an austenitic microstructure. Tensile tests were carried out, and the results revealed the tensile properties of both the base metals and the weldments. The hardness test results agreed well with the tensile test results.展开更多
In this study,the thickness-dependent microstructural characteristics of duplex stainless steel 2205 multi-pass welded joints were first investigated by the combination of optical microscope and electron back-scattere...In this study,the thickness-dependent microstructural characteristics of duplex stainless steel 2205 multi-pass welded joints were first investigated by the combination of optical microscope and electron back-scattered diffraction observation.Subsequently,a series of tensile tests of miniature samples cut from different passes and directions were performed to analyze the thickness-dependent and anisotropic mechanical properties.The results demonstrate that the microstructure changed with the welded passes,i.e.,a large number of grain boundary austenite,Widmanstätten austenite and a small number of tiny intragranular austenite existed at the surface passes,while a mass of intragranular austenite were found at the middle passes.Meanwhile,the Kurdjumov–Sachs orientation relationship was widespread at the welded zone.In addition,the yield and tensile strengths of the middle passes were greater than that of the surface passes due to the grain-boundary strengthening by tiny intragranular austenite.Furthermore,due to the existence of Kurdjumov–Sachs orientation relationship,the longitudinal yield and tensile strength were greater than transverse values,particularly for the middle passes.展开更多
Numerical simulation and experimental research on Linear Friction Welding(LFW) for GH4169 superalloy were carried out. Based on the joint microstructure and mechanical properties,a suitable welding process was determi...Numerical simulation and experimental research on Linear Friction Welding(LFW) for GH4169 superalloy were carried out. Based on the joint microstructure and mechanical properties,a suitable welding process was determined, which provided an important theoretical basis for the manufacture and repair of aeroengine components such as the superalloy blisk. The results show that the joint strain rate gradually increases with the increase of welding frequency, and the deformation resistance of the thermoplastic metal increases in the welding process, resulting in the interface thermoplastic metal not being extruded in time to form a flash, so the joint shortening amount gradually decreases. The thermoplastic metal in the center of the welding surface is kept at high welding temperature for a long time, resulting in the decrease of the joint strength. The microhardness of the joint shows a “W” distribution perpendicular to the weld, and most of the joints break in the Thermo-Mechanically Affected Zone(TMAZ) with high tensile strength and low elongation.When the welding area is increased without changing the aspect ratio of the welding surface, the interface peak temperature increases gradually, and the joint shortening amount decreases with the increase of the welding interface size.展开更多
Friction stir welding (FSW) of aluminum alloys is currently utilized in several modern industries. The joints must have sufficient elastic?plastic response and formability levels similar to that of the base metal. In ...Friction stir welding (FSW) of aluminum alloys is currently utilized in several modern industries. The joints must have sufficient elastic?plastic response and formability levels similar to that of the base metal. In this work, double-sided FSW of AA6061 sheet was compared with its conventional single-sided one. An adjustable tool with different pin lengths (50%?95% of the sheet thickness) was used to perform the double-sided welds. Macro- and micro-structures, strength, and hardness of the joints were investigated to determine the optimum pin penetration depth. The best results were obtained for a double-sided joint made by a pin length equal to 65% of the sheet thickness, which showed an increase of 41% in the ultimate tensile strength compared with the single-sided joint.展开更多
Excellent weldability substantially contributes to the intrinsic quality of steels,while appropriate chemical composition plays a primary role in the essential weldability of steels.The poor weldability of ferritic st...Excellent weldability substantially contributes to the intrinsic quality of steels,while appropriate chemical composition plays a primary role in the essential weldability of steels.The poor weldability of ferritic stainless steels could be improved through modification with minor alloy elements while minimally increasing the cost.Therefore,studying the effect of minor alloy elements on the weldability of steels is of considerable importance.In this study,several steels of middle-chromium hyperpure ferritic stainless 00Cr21Ti with different Ni content(0.3%,0.5%,0.8%,and 1.0%)were developed,and their weldabilities of butt joint samples welded using the metal inert gas welding process,including the influence of welded joints on the microstructure,tensile performance,corrosion resistance,and fatigue property,were investigated.Results show that the steels with w(Ni)≥0.8%exhibit excellent mechanical properties compared with those with low-Ni content steels,further,their impact toughness at normal atmospheric temperature meets the industrial application standard and the fatigue property is similar to that of 304 austenitic stainless steel.Moreover,results show that the corrosion resistance of all the samples is almost at the same level.The results acquired in this study are supposed to be useful for the optimization of the chemical composition of stainless steels aiming to improve weldability.展开更多
文摘The welding of aluminum(Al)and steel has attracted more and more interest due to the weight reduction trend in vehicle and aerospace manufacturing industries.5182-O/HC260YD+Z lap joint was produced by friction stir welding(FSW),and the microstructure and mechanical property of the joint were systemically characterized.The microstructure in horizontal direction of the Al and steel near interface was similar to their corresponding conventional friction stir welded joint.The joint was divided into stir zone of Al(ST-Al),stir zone of interface(ST-I),thermal-mechanically affected zone of steel(TMAZ-Fe)and base material of steel(BM-Fe)according to their distinct microstructure vertically.Three kinds of intermetallic compounds(IMCs)of FeAl_(3),FeAl and Fe_(3)Al were formed at the interface.The horizontal micro hardness distribution exhibited a hat shape and“M”shape in Al and steel,respectively.The hardest region of the joint was located at the ST-I,with a hardness of 175 HV−210 HV.The joint was fractured along the hook structure,with an average shear strength of 73.9 MPa.Fractural morphology of Al and steel indicted a cleavage fracture mode.
基金supported by the National Key R&D Program of China(2022YFB2602901)the National Natural Science Foundation of China(No.52178405).
文摘The complex bridge-track interaction between kilometer-span bridges and continuous Welded Rail(CWR)brings great challenges to CWR designing.Taking a suspension bridge with laying CWR as a case,the mechanical properties of CWR on the bridge are analyzed to reveal the sensitive areas of the track,and the design method of CWR and track structures on the beam ends are proposed.The results show that the unidirectional Rail Expansion Joints(REJ)need to be installed on the beam end of the kilometer-span bridge to reduce rail longitudinal force.Due to the bridge characteristics,there is no CWR fixed area on the kilometer-span bridge,and rail longitudinal force on the main span caused by bending loads needs to be concerned.The deformation of track on the beam end is complex,which is the weak area on the kilometer bridge,the large relative displacement between the stock rail of REJ and the main beam can cause poor stability of ballast bed on beam end,small resistance fasteners need to be laid on the sides of stock rail on the main beam to increase the stability of ballast and fasteners on the beam end.To improve the driving safety and comfort of beam end,the Sleeper-Supporting Apparatus(SSA)should be specially designed to ensure the uniform transition of track on beam ends.Temperature and wind loads have a significant impact on track regularity on the kilometer span bridge,the dynamic response of trains and bridges under those loads needs to be attended to.
基金Project(51405392)supported by the National Natural Science Foundation of ChinaProject(2019T120954)supported by the China Postdoctoral Science Foundation+1 种基金Project(2018BSHQYXMZZ31)supported by the Shaanxi Provincial Postdoctoral Science Foundation,ChinaProject(3102019MS0404)supported by the Fundamental Research Funds for the Central Universities,China.
文摘The microstructure evolution and high-temperature mechanical properties of laser beam welded TC4/TA15 dissimilar titanium alloy joints under different welding parameters were studied.The results show that the weld fusion zone of TC4/TA15 dissimilar welded joints consists of coarsenedβcolumnar crystals that contain mainly acicularα’martensite.The heat affected zone is composed of the initialαphase and the transformedβstructure,and the width of heat affected zone on the TA15 side is narrower than that on the TC4 side.With increasing temperature,the yield strength and ultimate tensile strength of the TC4/TA15 dissimilar welded joints decrease and the highest plastic deformation is obtained at 800°C.The tensile strength of the dissimilar joints with different welding parameters and base material satisfies the following relation(from high to low):TA15 base material>dissimilar joints>TC4 base material.The microhardness of a cross-section of the TC4/TA15 dissimilar joints reaches a maximum at the centre of the weld and is reduced globally after heat treatment,but the microhardness distribution is not changed.An elevated temperature tensile fracture of the dissimilar joints is located on the side of the TC4 base material.Necking occurs during the tensile tests and the fracture characteristics are typical when ductility is present in the material.
基金Project(51405392)supported by the National Natural Science Foundation of ChinaProject(20136102120022)supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(3102015ZY023)supported by the Fundamental Research Funds for the Central Universities,China
文摘The microstructure and mechanical properties of laser beam welded dissimilar joints in TC4 and TA15 titanium alloyswere investigated. The results showed that the coarse columnar grains containing a large amount of acicular α and martensite α′ werepresent in the fusion zone (FZ), some residual α phases and martensite structure were formed in the heat-affected zone (HAZ) onTC4 side, and bulk equiaxed α phase of the HAZ was on TA15 side. An asymmetrical microhardness profile across the dissimilarjoint was observed with the highest microhardness in the FZ and the lowest microhardness in TA15 BM. The orders of yield strengthand ultimate tensile strength were as follows: TC4 BM > TC4/TC4 similar joint > TA15 BM > TA15/TA15 similar joint > TC4/TA15dissimilar joint, and increased while hardening capacity and strain hardening exponent decreased with increasing strain rate from1×10?4 s?1 to 1×10?2 s?1. The TC4/TA15 dissimilar joints failed in the TA15 BM, and had characteristics of ductile fracture atdifferent strain rates.
基金Projects(51405389,51675435)supported by the National Natural Science Foundation of ChinaProject(3102017ZY005)supported by the Fundamental Research Funds for the Central Universities,China+3 种基金Project(SAST2016043)supported by the Fund of SAST,ChinaProject(20161125002)supported by the Aeronautical Science Foundation of ChinaProject(B08040)supported by the 111 Project,ChinaProjects(2016YFB0701203,2016YFB1100104)supported by the National Key Research and Development Program of China
文摘The microstructure and mechanical properties of dissimilar pinless friction stir spot welded joint of2A12aluminum alloy and TC4titanium alloy were evaluated.The results show that the joint of Al/Ti dissimilar alloys can be successfully attained through pinless friction stir spot welding(FSSW).The joint can be divided into three zones(SZ,TMAZ and HAZ).The microstructure of joint in Al alloy side changes significantly but it basically has no change in Ti alloy side.At the same rotation speed,the maximum load of welded joints gradually rises with the increase in dwell time.At the same dwell time,the maximum load of the welded joint increases with the increase of the rotational speed.In addition,optimal parameters were obtained in this work,and they are rotation speed of1500r/min,plunge speed of30mm/min,plunge depth of0.3mm and dwell time of15s.The fracture mode of welded joints is interfacial shear fracture.The microhardness of the joint on the Al side distributes in a typical“W”type and is symmetry along the weld center,but the distribution of the microhardness on the Ti side has no obvious change.
文摘Dissimilar material joining of 6008 aluminum alloy to H220 YD galvanized high strength steel was performed by resistance spot welding with especial electrodes that were a flat tip electrode against the steel surface and a domed tip electrode upon the aluminum alloy surface. An intermetallic compound layer composed of Fe2Al5 and FeAl3 was formed at the steel/ aluminum interface in the welded joint. The thickness of the intermetallic compound layer increased with increasing welding current and welding time, and the maximum thickness being 7. 0 μm was obtained at 25 kA and 300 ms. The weld nugget diameter and tensile shear load of the welded joint had increased tendencies first with increasing welding current ( 18 -22 kA) and welding time ( 50 - 300 ms), then changed little with further increasing welding current ( 22 - 25 kA) and welding time (300 -400 ms). The maximum tensile shear load reached 5.4 kN at 22 kA and 300 ms. The welded joint fractured through brittle intermetallic compound layer and aluminum alloy nugget.
文摘In this paper, to meet the needs of studying work of dynamic mechanical properties of welded joint, the dynamic mechanical properties of welded joint were measured by means of SHPB(Split Hopkinson Pressure Bar).The dynamic mechanical property's curves of every part of welded joint were obtained. For studying the dynamic behavior of mechanical heterogeneity of welded joint, important data were offered. The method of test creates a new way of studying dynamic mechanical properties of welded joint.
基金Project (2009ZM0264) supported by the Fundamental Research Funds for the Central Universities,China
文摘The dissimilar friction stir welding of pure copper/1350 aluminum alloy sheet with a thickness of 3 mm was investigated. Most of the rotating pin was inserted into the aluminum alloy side through a pin-off technique, and sound welds were obtained at a rotation speed of 1000 r/min and a welding speed of 80 mm/min. Complicated microstructure was formed in the nugget, in which vortex-like pattern and lamella structure could be found. No intermetallic compounds were found in the nugget. The hardness distribution indicates that the hardness at the copper side of the nugget is higher than that at the aluminum alloy side, and the hardness at the bottom of the nugget is generally higher than that in other regions. The ultimate tensile strength and elongation of the dissimilar welds are 152 MPa and 6.3%, respectively. The fracture surface observation shows that the dissimilar joints fail with a ductile-brittle mixed fracture mode durin~ tensile test.
基金The project is supported by Postdoctoral Science Fund of China and Postdoctoral Fund of Heilongjiang Province.
文摘Nanoindentation method was adopted to investigate the distribution regularities of micro-mechanical properties of 2219 twin wire welded joints, thus providing the necessary theoretical basis and guidance for joint strengthening and improvement of welding procedure. Experimental results show that in weld zone, micro-mechanical properties are seriously uneven. Both hardness and elastic modulus distribute as uneven sandwich layers, while micro-mechanical properties in bond area are much more uniform than weld zone;In heat-affected zone of 2219 twin wire welded joint, distribution regularity of hardness is similar to elastic modulus. The average hardness in quenching zone is higher than softening zone, and the average elastic modulus in solid solution zone is slightly higher than softening zone. As far as the whole welded joint is concerned, metal in weld possesses the lowest hardness. For welded specimens without reinforcement, fracture position is the weld when tensioning. While for welded specimens with reinforcement, bond area is the poorest position with joint strength coefficient of 61%. So, it is necessary to strengthen the poor positions--weld and bond area of 2219 twin wire welded joint in order to solve joint weakening of welding this kind of alloy.
文摘In this study, 7A52 aluminum alloy sheets of 4 mm in thickness were welded by tungsten inert gas welding using microalloying welding wires containing traces of Zr and Er. The influence of rare earth elements Zr and Er on the microstructure and mechanical properties of the welded joints was analyzed by optical microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, hardness testing, and tensile mechanical properties testing. Systematic analyses indicate that the addition of trace amounts of Er and Zr leads to the formation of fine Al3Er, Al3Zr, and Al3(Zr,Er) phases that favor significant grain refinement in the weld zone. Besides, the tensile strength and hardness of the welded joints were obviously improved with the addition of Er and Zr, as evidenced by the increase in tensile strength and elongation by 40 MPa and 1.4%, respectively, and by the welding coefficient of 73%.
基金Funded by the National Natural Science Foundation of China(Nos.51505322,51175364)Natural Science Foundation of Shanxi Province of China(No.2013011014-3)
文摘Tungsten inert gas(TIG) welding was performed on 2.7 mm thick commercial extruded AZ31 B magnesium alloy plates. We investigated the effect of post-weld heat treatment(PWHT) on the microstructure, mechanical properties and precipitated phase of the weld joints. The results showed that during the annealing treatment(200 ℃-1 h, 250 ℃-1 h, 300 ℃-1 h, 350 ℃-1 h, 400 ℃-1 h, and 450 ℃-1 h), the average grain size in the weld seam was the minimum after annealing at 400 ℃ for 1 hour, and then abnormally grew up after annealing at 450 ℃ for 1 hour. The mechanical properties enhanced when the joints were processed from 200 ℃-1 h to 400 ℃-1 h but sharply decreased with increasing annealing temperature. In contrast to the annealing treatment, solution treatment(250 ℃-10 h, 300 ℃-10 h, 350 ℃-10 h, 400 ℃-10 h, and 450 ℃-10 h) exhibited a better ductility but a slight deterioration in tensile strength. Especially speaking, no eutectic compounds(such as Mg17 Al12) were observed in the weld seam. The supersaturated Al atoms were precipitated in a coarse spherical shape dispersed in the weld seam. The precipitated Al atoms dissolved in the matrix substances at the condition(400 ℃-1 h) or(250 ℃-10 h). The solution treatment caused grain coarsening and precipitated Al atoms dissolved in the weld seam substantially, which resulted in a drop in micro-hardness at the weld seam compared to the area of the annealed joints.
基金the Ministry of Human Resource and Development,Government of India for providing the financial assistantship in the form of fellowship。
文摘The present research introduces a unique concept of scarf joint technique in friction stir welding(FSW) of aluminum alloy AA 6061-T6 plates and an investigation on weld quality.A new joint configuration with two distinct scarf angles(75°and 60°) was considered in this study.The various aspects of welding were compared with contemporary simple square butt(SSB) joint configuration.Welding was carried out at a constant tool rotation speed(TRS),tool traverse speed(TTS) and tool tilt angle of 1100 rpm,2 mm/s and2°,respectively.The results are analyzed in terms of force and torque distribution,microstructure,macrostructure,and mechanical property perspective for different joint configurations.The study reveals the minimum amount of force and torque at 60°scarf angle joint configuration compared to that of square butt joint configuration.Macro study shows that all the joints were defect-free,and a prominent onion ring was present in the lower portion of the weld nugget(WN).Fine equiaxed grains with a minimum average grain size diameter of 6.82 μm were obtained in the WN of scarf joint configuration(SJC).The maximum ultimate tensile strength(UTS) and maximum average NZ hardness of 267 MPa and83.82 HV0.1were obtained in SJC3 at a scarf angle of 60°.It has been observed from the investigation that the joint efficiency increases from 72.5%(SSB) to 86%(SJC3) at a 60° scarf angle.This unique characteristic may lay an impetus on probable joint strength enhancement technique without increasing the production cost.
基金Project(2005CB623705) supported by the National Basic Research Program of China
文摘7A52 Al alloy plate aged at 105 ℃ for 8 h and then at 130 ℃ for 24 h was welded by means of TIG using Al- 6.3Mg-0.35Sc-0.1Zr-0.1Cr solder wire. Mechanical properties and microstructures of welded joint were studied. There are two obviously soft areas in the welded joint, welding seam and over-aging zone. The mechanical properties of welded joint are that σb is 358 MPa, σ0.2 is 238 MPa and δ5 is 6.6%. 75.6% of welding coefficient can be achieved. The addition of scandium leads to very significant grain refinement in the fusion zone, which results in a reduction in solidification cracking tendency. The solidification cracking isn’t observed.
文摘Using the optical microscope, tensile test machine and micro hardness meter, the effect of heat input on the microstructure and mechanical properties in fusion welding joints of AZ31B wrought alloys was investigated systematically, the mechanism on joint properties losing was analyzed, and a valid method to improve joint properties of the magnesium alloy fusion welding was explored. The results show that the heat input has an obvious effect on the microstructure and properties. Under the condition of penetration, with the heat input decreasing, the crystal grain in the weld and heat affected zone (HAZ) becomes fine, the width of HAZ becomes obviously narrow, and the molding of the weld is improved, so the tensile strength and elongation are increased and the hardness of joints is improved. When the heat input reaches 60 J/mm, the high quality joints can be gained.
文摘This paper presents studies on the microstructure and mechanical properties of AISI 316L stainless steel and AISI 4340 low-alloy steel joints formed by the Nd:YAG laser welding process. The weld microstructures and heat affected zones (HAZs) were investigated. Austenitic microstructures were observed in all of the samples. The sizes of the HAZs changed when the heat input was varied, and the 316L sides exhibited a larger HAZ. The cooling rates were calculated by measuring the solidification dendrite arm spacing. It is shown that high cooling rates lead to an austenitic microstructure. Tensile tests were carried out, and the results revealed the tensile properties of both the base metals and the weldments. The hardness test results agreed well with the tensile test results.
基金the National Natural Science Foundation of China(No.52105166)the Qingdao Postdoctoral Applied Research Project(ZX20220199).
文摘In this study,the thickness-dependent microstructural characteristics of duplex stainless steel 2205 multi-pass welded joints were first investigated by the combination of optical microscope and electron back-scattered diffraction observation.Subsequently,a series of tensile tests of miniature samples cut from different passes and directions were performed to analyze the thickness-dependent and anisotropic mechanical properties.The results demonstrate that the microstructure changed with the welded passes,i.e.,a large number of grain boundary austenite,Widmanstätten austenite and a small number of tiny intragranular austenite existed at the surface passes,while a mass of intragranular austenite were found at the middle passes.Meanwhile,the Kurdjumov–Sachs orientation relationship was widespread at the welded zone.In addition,the yield and tensile strengths of the middle passes were greater than that of the surface passes due to the grain-boundary strengthening by tiny intragranular austenite.Furthermore,due to the existence of Kurdjumov–Sachs orientation relationship,the longitudinal yield and tensile strength were greater than transverse values,particularly for the middle passes.
基金supported by the National Natural Science Foundation of China (Nos. 52305420, 52074228 and 51875470)the China Postdoctoral Science Foundation (No. 2023M742830)the Xi’an Beilin District Science and Technology Planning Project, China (No. GX2349)。
文摘Numerical simulation and experimental research on Linear Friction Welding(LFW) for GH4169 superalloy were carried out. Based on the joint microstructure and mechanical properties,a suitable welding process was determined, which provided an important theoretical basis for the manufacture and repair of aeroengine components such as the superalloy blisk. The results show that the joint strain rate gradually increases with the increase of welding frequency, and the deformation resistance of the thermoplastic metal increases in the welding process, resulting in the interface thermoplastic metal not being extruded in time to form a flash, so the joint shortening amount gradually decreases. The thermoplastic metal in the center of the welding surface is kept at high welding temperature for a long time, resulting in the decrease of the joint strength. The microhardness of the joint shows a “W” distribution perpendicular to the weld, and most of the joints break in the Thermo-Mechanically Affected Zone(TMAZ) with high tensile strength and low elongation.When the welding area is increased without changing the aspect ratio of the welding surface, the interface peak temperature increases gradually, and the joint shortening amount decreases with the increase of the welding interface size.
基金The support of Iran National Science Foundation (INSF) (Grant No. 91051732)
文摘Friction stir welding (FSW) of aluminum alloys is currently utilized in several modern industries. The joints must have sufficient elastic?plastic response and formability levels similar to that of the base metal. In this work, double-sided FSW of AA6061 sheet was compared with its conventional single-sided one. An adjustable tool with different pin lengths (50%?95% of the sheet thickness) was used to perform the double-sided welds. Macro- and micro-structures, strength, and hardness of the joints were investigated to determine the optimum pin penetration depth. The best results were obtained for a double-sided joint made by a pin length equal to 65% of the sheet thickness, which showed an increase of 41% in the ultimate tensile strength compared with the single-sided joint.
文摘Excellent weldability substantially contributes to the intrinsic quality of steels,while appropriate chemical composition plays a primary role in the essential weldability of steels.The poor weldability of ferritic stainless steels could be improved through modification with minor alloy elements while minimally increasing the cost.Therefore,studying the effect of minor alloy elements on the weldability of steels is of considerable importance.In this study,several steels of middle-chromium hyperpure ferritic stainless 00Cr21Ti with different Ni content(0.3%,0.5%,0.8%,and 1.0%)were developed,and their weldabilities of butt joint samples welded using the metal inert gas welding process,including the influence of welded joints on the microstructure,tensile performance,corrosion resistance,and fatigue property,were investigated.Results show that the steels with w(Ni)≥0.8%exhibit excellent mechanical properties compared with those with low-Ni content steels,further,their impact toughness at normal atmospheric temperature meets the industrial application standard and the fatigue property is similar to that of 304 austenitic stainless steel.Moreover,results show that the corrosion resistance of all the samples is almost at the same level.The results acquired in this study are supposed to be useful for the optimization of the chemical composition of stainless steels aiming to improve weldability.