The rules of MIP reactions for catalytic cracking of sulfur compounds and its influence on the sulfur content in the MIP naphtha were studied.The mam factors influencing the sulfur content in the MIP naphtha were thou...The rules of MIP reactions for catalytic cracking of sulfur compounds and its influence on the sulfur content in the MIP naphtha were studied.The mam factors influencing the sulfur content in the MIP naphtha were thought to be the sulfur content of feedstock and were closely related with the olefin content of naphtha.Taking into account the characteristic features of MIP process,the methods for reducing the sulfur content in the MIP naphtha were comprised of decreasing the sulfur content of feedstock by hydrotreating and decreasing the olefin content of naphtha through promoting hydrogen transfer reactions.Therefore,the EuroⅣclean gasoline with low sulfur content and low olefin content could be obtained directly through the MIP technology.展开更多
The sulfur-reducing functional component the Lewis acid-base pair compound and associated active zeolite component were developed to prepare the RFCC catalyst DOS for reducing sulfur content in gasoline. The results o...The sulfur-reducing functional component the Lewis acid-base pair compound and associated active zeolite component were developed to prepare the RFCC catalyst DOS for reducing sulfur content in gasoline. The results of catalyst evaluation have revealed that the Lewis acid-base pair compound developed hereby could enhance the conversion of macromolecular sulfur compounds by the catalyst to promote the proceeding of desulfurization reactions, and the synergetic action of the selected zeolite and the Lewis acid-base pair compound could definitely reduce the olefins and sulfur contents in gasoline. The heavy oil conversion capability of the catalyst DOS thus developed was higher coupled with an enhanced resistance to heavy metals contamination to reduce the sulfur content in gasoline by over 20%. The commercial application of this catalyst at the SINOPEC Jiujiang Branch Company has revealed that compared to the GRV-C catalyst the oil slurry yield obtained by the catalyst DOS was reduced along with an improved coke selectivity, an increased total liquid yield, and a decreased olefin content in gasoline. The ratio of sulfur in gasoline/sulfur in feed oil could be reduced by 20.3 m%.展开更多
文摘The rules of MIP reactions for catalytic cracking of sulfur compounds and its influence on the sulfur content in the MIP naphtha were studied.The mam factors influencing the sulfur content in the MIP naphtha were thought to be the sulfur content of feedstock and were closely related with the olefin content of naphtha.Taking into account the characteristic features of MIP process,the methods for reducing the sulfur content in the MIP naphtha were comprised of decreasing the sulfur content of feedstock by hydrotreating and decreasing the olefin content of naphtha through promoting hydrogen transfer reactions.Therefore,the EuroⅣclean gasoline with low sulfur content and low olefin content could be obtained directly through the MIP technology.
文摘The sulfur-reducing functional component the Lewis acid-base pair compound and associated active zeolite component were developed to prepare the RFCC catalyst DOS for reducing sulfur content in gasoline. The results of catalyst evaluation have revealed that the Lewis acid-base pair compound developed hereby could enhance the conversion of macromolecular sulfur compounds by the catalyst to promote the proceeding of desulfurization reactions, and the synergetic action of the selected zeolite and the Lewis acid-base pair compound could definitely reduce the olefins and sulfur contents in gasoline. The heavy oil conversion capability of the catalyst DOS thus developed was higher coupled with an enhanced resistance to heavy metals contamination to reduce the sulfur content in gasoline by over 20%. The commercial application of this catalyst at the SINOPEC Jiujiang Branch Company has revealed that compared to the GRV-C catalyst the oil slurry yield obtained by the catalyst DOS was reduced along with an improved coke selectivity, an increased total liquid yield, and a decreased olefin content in gasoline. The ratio of sulfur in gasoline/sulfur in feed oil could be reduced by 20.3 m%.