NaY zeolite was modified with oxalic acid, and Ce(IV)Y(1) zeolite was obtained via liquid phase ion exchange between the modified NaY zeolite and cerium nitrate. The Ce(IV)Y(2) zeolite was obtained via liquid phase io...NaY zeolite was modified with oxalic acid, and Ce(IV)Y(1) zeolite was obtained via liquid phase ion exchange between the modified NaY zeolite and cerium nitrate. The Ce(IV)Y(2) zeolite was obtained via liquid phase ion exchange between NaY zeolite and cerium nitrate. The performance of two Y zeolites [Ce(IV)Y(1) and Ce(IV)Y(2)] was compared through static selective adsorptive desulfurization of FCC gasoline at room temperature and normal pressure. The sulfur compounds and contents of the FCC gasoline were analyzed by microcoulometry and GC-SCD chromatogram. The results showed that the effect of adsorptive desulfurization of FCC gasoline achieved by Ce(IV)Y(1) zeolite was better than that of Ce(IV)Y(2) zeolite. The rate for adsorptive desulfurization of FCC gasoline by Ce(IV)Y(1) zeolite and Ce(IV)Y(2) zeolite was 85.0% and 62.4%, respectively. The Ce(IV)Y(1) zeolite could adsorb DMTs, which could not be adsorbed by Ce(IV)Y(2) zeolite. The rate of regeneration of extruded Ce(IV)Y(1)zeolite was 95.5%.展开更多
The catalytic activity of trimethyl phosphite modified HZSM-5 zeolite and un-modified HZSM-5zeolite treated with 100% steam at 673,773,873,973 and 1073K, respectively, were investigated using heptanecracking as a prob...The catalytic activity of trimethyl phosphite modified HZSM-5 zeolite and un-modified HZSM-5zeolite treated with 100% steam at 673,773,873,973 and 1073K, respectively, were investigated using heptanecracking as a probe reaction. The results showed that the heptane conversion of both trimethyl phosphitetreated samples and un-phosphated samples decreased with an increase in treating temperature, but trimethylphosphite modified samples showed higher activity in comparison with the un-modified samples, which weresteam-treated at a higher temperature. The results were firstly elucidated by the model cluster method andcomputational quantum chemistry method. Full optimization and frequency analysis of all cluster model havebeen carried out using the Gaussian 94 software-package with the PM 3 semi-empirical method performed onsmall cluster models. The computational results showed that the dealumination of trimethyl phosphite modi-fied zeolite model cluster was more difficult than that of un-modified zeolite model cluster when they weretreated with steam while investigating the heat of reaction.展开更多
基金the National Natural Sci-ence Foundation of China (No.20476042 and No.20776064) for the financial support.
文摘NaY zeolite was modified with oxalic acid, and Ce(IV)Y(1) zeolite was obtained via liquid phase ion exchange between the modified NaY zeolite and cerium nitrate. The Ce(IV)Y(2) zeolite was obtained via liquid phase ion exchange between NaY zeolite and cerium nitrate. The performance of two Y zeolites [Ce(IV)Y(1) and Ce(IV)Y(2)] was compared through static selective adsorptive desulfurization of FCC gasoline at room temperature and normal pressure. The sulfur compounds and contents of the FCC gasoline were analyzed by microcoulometry and GC-SCD chromatogram. The results showed that the effect of adsorptive desulfurization of FCC gasoline achieved by Ce(IV)Y(1) zeolite was better than that of Ce(IV)Y(2) zeolite. The rate for adsorptive desulfurization of FCC gasoline by Ce(IV)Y(1) zeolite and Ce(IV)Y(2) zeolite was 85.0% and 62.4%, respectively. The Ce(IV)Y(1) zeolite could adsorb DMTs, which could not be adsorbed by Ce(IV)Y(2) zeolite. The rate of regeneration of extruded Ce(IV)Y(1)zeolite was 95.5%.
文摘The catalytic activity of trimethyl phosphite modified HZSM-5 zeolite and un-modified HZSM-5zeolite treated with 100% steam at 673,773,873,973 and 1073K, respectively, were investigated using heptanecracking as a probe reaction. The results showed that the heptane conversion of both trimethyl phosphitetreated samples and un-phosphated samples decreased with an increase in treating temperature, but trimethylphosphite modified samples showed higher activity in comparison with the un-modified samples, which weresteam-treated at a higher temperature. The results were firstly elucidated by the model cluster method andcomputational quantum chemistry method. Full optimization and frequency analysis of all cluster model havebeen carried out using the Gaussian 94 software-package with the PM 3 semi-empirical method performed onsmall cluster models. The computational results showed that the dealumination of trimethyl phosphite modi-fied zeolite model cluster was more difficult than that of un-modified zeolite model cluster when they weretreated with steam while investigating the heat of reaction.