期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于样本密度的FCM改进算法 被引量:12
1
作者 黎俊锋 朱锋峰 《科学技术与工程》 2007年第4期636-638,共3页
从聚类中心的直观属性出发,选取样本中密度较大的点作为FCM算法的初始聚类中心。解决了FCM算法对初始值敏感、收敛结果容易陷入局部极小等问题。实验结果证明这一算法的合理性和有效性。
关键词 fcm算法 聚类中心 样本密度
下载PDF
使用DBSCAN的FCM神经网络分类器 被引量:5
2
作者 张晓倩 杨波 +1 位作者 王琳 梁志锋 《模式识别与人工智能》 EI CSCD 北大核心 2016年第2期185-192,共8页
针对浮动质心法(FCM)在实现过程采用的K-means算法不易发现任意形状簇及对离群点敏感等缺陷,提出使用具有噪声的基于密度的聚类算法(DBSCAN)改进FCM神经网络分类器的方法.DBSCAN将离群点看作无法处理的点,并能发现任意形状的簇,将分区... 针对浮动质心法(FCM)在实现过程采用的K-means算法不易发现任意形状簇及对离群点敏感等缺陷,提出使用具有噪声的基于密度的聚类算法(DBSCAN)改进FCM神经网络分类器的方法.DBSCAN将离群点看作无法处理的点,并能发现任意形状的簇,将分区空间中的染色点划分成若干个更准确的分区.此外,定义优化目标函数,并用粒子群优化算法优化神经网络的各个参数,获得最优的分类模型.在UCI数据库上的对比实验表明,改进后的FCM方法在分类精度、鲁棒性和运行时间方面均优于原有FCM. 展开更多
关键词 神经网络 浮动质心法(fcm) 分区空间 具有噪声的基于密度的聚类算法(DBSCAN)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部