期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Short-term travel flow prediction method based on FCM-clustering and ELM 被引量:2
1
作者 WANG Xing-chao HU Jian-ming +1 位作者 LIANG Wei ZHANG Yi 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第6期1344-1350,共7页
Short-term travel flow prediction has been the core of the intelligent transport systems(ITS). An advanced method based on fuzzy C-means(FCM) and extreme learning machine(ELM) has been discussed by analyzing predictio... Short-term travel flow prediction has been the core of the intelligent transport systems(ITS). An advanced method based on fuzzy C-means(FCM) and extreme learning machine(ELM) has been discussed by analyzing prediction model. First, this model takes advantages of ability to adapt to nonlinear systems and the fast speed of ELM algorithm. Second, with FCM-clustering function, this novel model can get the clusters and the membership in the same cluster, which means that the associated observation points have been chosen. Therefore, the spatial relations can be used by giving the weight to every observation points when the model trains and tests the ELM. Third, by analyzing the actual data in Haining City in 2016, the feasibility and advantages of FCM-ELM prediction model have been shown when compared with other prediction algorithms. 展开更多
关键词 intelligent transportation systems (ITS) TRAVEL flow prediction extreme learning machine (ELM) fcm-clustering SPATIO-TEMPORAL relation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部