An FE model was developed to study thermal behavior during the rod and wire hot continuous rolling process. The FE code MSC. Marc was used in the simulation using implicit static arithmetic. The whole rolling process ...An FE model was developed to study thermal behavior during the rod and wire hot continuous rolling process. The FE code MSC. Marc was used in the simulation using implicit static arithmetic. The whole rolling process of 30 passes was separated and simulated with several continuous 3D elastic-plastic FE models. A rigid pushing body and a data transfer technique were introduced into this model. The on-line experiments were conducted on 304 stainless steel and GCr15 steel hot continuous rolling process to prove the results of simulation by implicit static FEM. The results show that the temperature results of finite element simulations are in good agreement with experiments, which indicate that the FE model developed in this study is effective and efficient.展开更多
The aim of this paper is to model the steady-state condition of a rotary shaft seal (RSS) system. For this, an iterative thermal-mechanical algorithm was developed based on incremental finite element analyzes. The beh...The aim of this paper is to model the steady-state condition of a rotary shaft seal (RSS) system. For this, an iterative thermal-mechanical algorithm was developed based on incremental finite element analyzes. The behavior of the seal’s rubber material was taken into account by a large-strain viscoelastic, so called generalized Maxwell model, based on Dynamic Mechanical Thermal Analyses (DMTA) and tensile measurements. The pre-loaded garter spring was modelled with a bilinear material model and the shaft was assumed to be linear elastic. The density, coefficient of thermal expansion and the thermal conductance of the materials were taken into consideration during simulation. The friction between the rotary shaft seal and the shaft was simplified and modelled as a constant parameter. The iterative algorithm was evaluated at two different times, right after assembly and 1 h after assembly, so that rubber material’s stress relaxation effects are also incorporated. The results show good correlation with the literature data, which state that the permissible temperature for NBR70 (nitrile butadiene rubber) material contacting with ~80 mm shaft diameter, rotating at 2600/min is 100°C. The results show 107°C and 104°C for the two iterations. The effect of friction induced temperature, changes the width of the contact area between the seal and the shaft, and significantly reduces the contact pressure.展开更多
In this paper, the mechanical strength of the toroidal field (TF) magnets of HT-7U with the electromagnetic force in different magnetic fields is emphatically analyzed by means of finite element method. The model and ...In this paper, the mechanical strength of the toroidal field (TF) magnets of HT-7U with the electromagnetic force in different magnetic fields is emphatically analyzed by means of finite element method. The model and feasible method of computation are put forward. Some important conclusions are made available for reference in the design and construction of TF for HT-7U.展开更多
The storage of hydrogen gas in lined rock caverns(LRCs)may enable the implementation of the firstlarge-scale fossil-free steelmaking process in Sweden,but filling such storage causes joints in the rockmass to open,con...The storage of hydrogen gas in lined rock caverns(LRCs)may enable the implementation of the firstlarge-scale fossil-free steelmaking process in Sweden,but filling such storage causes joints in the rockmass to open,concentrating strains in the lining.The structural interaction between the LRC componentsmust be able to reduce the strain concentration in the sealing steel lining;however,this interaction iscomplex and difficult to predict with analytical methods.In this paper,the strain concentration in LRCsfrom the opening of rock joints is studied using finite element(FE)analyses,where the large-and small-scale deformation behaviors of the LRC are coupled.The model also includes concrete crack initiation anddevelopment with increasing gas pressure and rock joint width.The interaction between the jointed rockmass and the reinforced concrete,the sliding layer,and the steel lining is demonstrated.The results showthat the rock mass quality and the spacing of the rock joints have the greatest influence on the straindistributions in the steel lining.The largest effect of rock joints on the maximum strains in the steellining was observed for geological conditions of“good”quality rock masses.展开更多
Aim To analyse the static temperature field ofthe solid rubber tire(SRT).Methods The mechanical and thermal FE models were developed and analyzed respectively with the FE software ANSYS.Results The maximum temperature...Aim To analyse the static temperature field ofthe solid rubber tire(SRT).Methods The mechanical and thermal FE models were developed and analyzed respectively with the FE software ANSYS.Results The maximum temperature becomes higher with the higher with the higher velocity of tire and scales down slightly with the higher convection coefficients.The mixed models are reasonable.Conclusion The study on static temperature field is important and reasonable.It gives the fundament for life analysis of SRT.展开更多
The effects of cell wall property on the compressive performance of high porosity, closed-cell aluminum foams prepared by gas injection method were investigated. The research was conducted both experimentally and nume...The effects of cell wall property on the compressive performance of high porosity, closed-cell aluminum foams prepared by gas injection method were investigated. The research was conducted both experimentally and numerically. Foam specimens prepared from conditioned melt were tested under uniaxial compressive loading condition. The cell wall microstructure and fracture were observed through optical microscope(OM) and scanning electron microscope(SEM), which indicates that the cell wall property is impaired by the defects in cell walls and oxide films on the cell wall surface. Subsequently, finite element(FE) models based on three-dimensional thin shell Kelvin tetrakaidecahedron were developed based on the mechanical properties of the raw material and solid material that are determined by using experimental measurements. The simulation results show that the plateau stress of the nominal stress-strain curve exhibits a linear relationship with the yield strength of the cell wall material. The simulation plateau stress is higher than the experimental data, partly owing to the substitution of solid material for cell wall material in the process of the establishment of FE models.展开更多
The Liquine-Ofqui Fault Zone(LOFZ) of southern Chilean Andes is one of the largest active strike-slip fault zones.There is an ongoing debate regarding the origin of the stress field along the LOFZ due to its complex g...The Liquine-Ofqui Fault Zone(LOFZ) of southern Chilean Andes is one of the largest active strike-slip fault zones.There is an ongoing debate regarding the origin of the stress field along the LOFZ due to its complex geometry.This paper represents a study of the origins of the LOFZ regional stress field.Stress fields are calculated by finite element(FE) analysis.The two possible stress origins, i.e., oblique plate convergence and ridge collision/indenter tectonics of Chile ridge against Peru-Chile trench, have been emphasized in the present study.Three types of boundary conditions for the three particular models have been applied to calculate stress fields.Models are assumed to be elastic and plane stress condition.Modeling results are presented in terms of four parameters, i.e., orientation of maximum horizontal stress(σ H max ), displacement vector, s train distribution, and maximum shear stress(τmax ) contour line within the model.The results of the first model with oblique plate convergence show inconsistency between the geometric shape of the LOFZ and the distribution of the four parameters.Although more realistic results are obtained from the second model with normal ridge collision, there are few coincident in the LOFZ geometry and regional stress field.The third model with normal and oblique ridge collision is reasonable in understanding the origin of stress field and geometrical condition in the lithosphere of the LOFZ.展开更多
Finite element (FE) coupled thermal-mechanical analysis is widely used to predict the deformation and residualstress of wire arc additive manufacturing (WAAM) parts. In this study, an innovative single-layermulti-bead...Finite element (FE) coupled thermal-mechanical analysis is widely used to predict the deformation and residualstress of wire arc additive manufacturing (WAAM) parts. In this study, an innovative single-layermulti-bead profilegeometric modeling method through the isosceles trapezoid function is proposed to build the FE model of theWAAMprocess. Firstly, a straight-line model for overlapping beads based on the parabola function was establishedto calculate the optimal center distance. Then, the isosceles trapezoid-based profile was employed to replace theparabola profiles of the parabola-based overlapping model to establish an innovative isosceles trapezoid-basedmulti-bead overlapping geometric model. The rationality of the isosceles trapezoid-based overlapping model wasconfirmed by comparing the geometric deviation and the heat dissipation performance index of the two overlappingmodels. In addition, the FE-coupled thermal-mechanical analysis, as well as a comparative experiment of thesingle-layer eight-bead deposition process show that the simulation results of the above two models agree with theexperimental results. At the same time, the proposed isosceles trapezoid-based overlappingmodels are all straightlineprofiles, which can be divided into high-quality FE elements. It can improve the modeling efficiency andshorten the simulation calculation time. The innovative modeling method proposed in this study can provide anefficient and high-precision geometricmodelingmethod forWAAMpart FE coupled thermal-mechanical analysis.展开更多
Microdamage is produced in bone tissue under the long-termeffects of physiological loading,as well as age,disease and other factors.Bone remodeling can repair microdamage,otherwise this damage will undermine bone qual...Microdamage is produced in bone tissue under the long-termeffects of physiological loading,as well as age,disease and other factors.Bone remodeling can repair microdamage,otherwise this damage will undermine bone quality and even lead to fractures.In this paper,the damage variable was introduced into the remodeling algorithm.The new remodeling algorithm contains a quadratic term that can simulate reduction in bone density after large numbers of loading cycles.The model was applied in conjunction with the 3Dfinite elementmethod(FEM)to the remodeling of the proximal femur.The results showed that the initial accumulation of fatigue damage led to an increase in density but when the damage reached a certain level,the bone density decreased rapidly until the femur failed.With the accumulation of damage,bone remodeling was coupled with fatigue damage to maintain the function of bone.When the accumulation of damage reached a certain level,bone remodeling failed to repair the accumulated fatigue damage in time,and continued cyclic loading significantly weakened the loadbearing capacity of the bone.The new mathematical model not only predicts fatigue life,but also helps to further understand the compromise between damage repair and damage accumulation,which is of great significance for the prevention and treatment of clinical bone diseases.展开更多
The transferability of the toughness results in ductile-brittle transition region for welded cracked specimens is conducted by 3D FE analysis. The fracture toughness Values for the double edge notched tension specimen...The transferability of the toughness results in ductile-brittle transition region for welded cracked specimens is conducted by 3D FE analysis. The fracture toughness Values for the double edge notched tension specimens are predicted effectively from the bend test results based on the local approach considering stable crack growth. It is found that the cell model gives a good description of the stable crack growth behavior, and the local approach is useful for the transferability analysis of fracture toughness results in ductile-brittle transition region.展开更多
A compressive design and analysis of a turbofan engine is presented in this paper. The components of jet engine have been analyzed based on mechanical design concept. An attempt has been to select materials based on s...A compressive design and analysis of a turbofan engine is presented in this paper. The components of jet engine have been analyzed based on mechanical design concept. An attempt has been to select materials based on sustainability and green design considerations. The energy content (e) of the materials has been one of the parameters for material selection. The choice of material has a substantial impact on cost, manuthcturing process, and the life cycle efficiency. All components nose cone, fan blade, inlet shaft, including compressor has been solid modeled using Siemens NX 11.0 CAD software. The finite element analysis of every component was performed and found safe. A tolerance analysis was performed before assembly of the turbofan engine. A numerical analysis was completed on blade and inlet geometries to determine a more efficient turbofan engine. Thermal analysis was executed oi1 the cone and suitable corrections were made. Finally, the cost and the total energy were estimated to show how much energy is needed to manufacture a turbofan jet engine.展开更多
A new continuum damage mechanics model for fretting fatigue life prediction is established. In this model, the damage evolution rate is described by two kinds of quantities. One is associated with the cyclic stress ch...A new continuum damage mechanics model for fretting fatigue life prediction is established. In this model, the damage evolution rate is described by two kinds of quantities. One is associated with the cyclic stress characteristics obtained by the finite element (FE) analysis, and the other is associated with the material fatigue property identified from the fatigue test data of standard specimens. The wear is modeled by the energy wear law to simulate the contact geometry evolution. A two-dimensional (2D) plane strain FE implementation of the damage mechanics model and the energy wear model is presented in the platform of ABAQUS to simulate the evolutions of the fatigue damage and the wear scar. The effect of the specimen thickness is also investigated. The predicted results of the crack initiation site and the fretting fatigue life agree well with available experimental data. Comparisons are made with the critical plane Smith- Watson-Topper (SWT) method.展开更多
A theoretical model concerning active Q-switching of an Fe:ZnSe laser pumped by a continuous-wave(CW)2.8μm fiber laser is developed.Calculations are compared with the recently reported experiment results,and good agr...A theoretical model concerning active Q-switching of an Fe:ZnSe laser pumped by a continuous-wave(CW)2.8μm fiber laser is developed.Calculations are compared with the recently reported experiment results,and good agreement is achieved.Effects of principal parameters,including pump power,output reflectivity,ion concentration and temperature of crystal,on the laser output performance are investigated and analyzed.Numerical results demonstrate that similar to highly efficient CWFe:ZnSe laser,low temperature of the crystal is significant to obtain high peak power Q-switched pulses.The numerical simulation results are useful for optimizing the design of actively Q-switched Fe:ZnSe laser.展开更多
During the construction of the guiding dike in the Yangtze Estuary, some of the caisson structures sank into the soil for 1 -5 m or slid about 20 m away from the original place when a strong storm attacked this area. ...During the construction of the guiding dike in the Yangtze Estuary, some of the caisson structures sank into the soil for 1 -5 m or slid about 20 m away from the original place when a strong storm attacked this area. Dynamic triaxial tests were carried out to simulate the behavior of foundation soils under wave loading. The test results show that the excessive settlement and lateral movement of the caissons are due to the weakening of the soft clay strength during the strong storm. The test results also show that the ability of the soft clay to resist the wave force will be greatly increased when the soft soil samples are suitably improved. Based on the test results, an improvement method combining vertical drains with surcharge loading was proposed to strengthen the foundation soil. On the improved soil foundation, the dike has been reconstructed and undergone several strong storms without any damage. A finite element approach has been developed for analyzing the settlement and stability of the dike under the action of strong storm.展开更多
To study the distribution and dissipation of braking power of wet multidisc brake and determine thermal load and thermal flux distribution between mated discs, the concept of distributing brake power four times was pu...To study the distribution and dissipation of braking power of wet multidisc brake and determine thermal load and thermal flux distribution between mated discs, the concept of distributing brake power four times was put forward. The third and the fourth distribution of brake power were calculated by using finite element(FE) software ANSYS. The third and the fourth distribution of wet multidisc brake are mainly related to material characteristics of discs during emergency braking, while most of the braking power is carried off during continuous braking. Basis is provided for further analysis of disc failure and applicability of different friction materials.展开更多
Bamboo is a renewable and environmentally friendly material often used for construction.This study investigates the flexural behavior of bamboo beams through theoretical and finite element(FE)analyses.Considering the ...Bamboo is a renewable and environmentally friendly material often used for construction.This study investigates the flexural behavior of bamboo beams through theoretical and finite element(FE)analyses.Considering the material’s nonlinearity,a method of calculating load-deflection curves is proposed and validated via FE analysis.The interfacial slippage dominated by the shear stiffness of the interface between two bamboo poles significantly influences the flexural behavior of double-pole bamboo beams.Thus,the load-deflection curves for different shear stiffnesses can be obtained via theoretical and FE analyses.Subsequently,a novel configuration using diagonal steel bands to avoid slippage is presented.An inclination angle of 45°is suggested to adequately develop the stiffness and bearing capacity of the steel band.展开更多
The paper focuses on the assessment of the hull girder ultimate strength,combined with random pitting corrosion wastage,by the incremental-iterative method.After a brief review about the state of art,the local ultimat...The paper focuses on the assessment of the hull girder ultimate strength,combined with random pitting corrosion wastage,by the incremental-iterative method.After a brief review about the state of art,the local ultimate strength of pitted platings under uniaxial compression is preliminarily outlined and subsequently a closed-form design formula is endorsed in the Rule incremental-iterative method,to account for pitting corrosion wastage in the hull girder ultimate strength check.The ISSC bulk carrier is assumed as reference ship in a benchmark study,devoted to test the effectiveness of the incremental-iterative method,by a comparative analysis with a set of FE simulations,performed by Ansys Mechanical APDL.Four reference cases,with different locations of pitting corrosion wastage,are investigated focusing on nine combinations of pitting and corrosion intensity degrees.Finally,a comparative analysis between the hull girder ultimate strength,combined with pitting corrosion wastage,and the relevant values,complying with the Rule net scantling approach,is performed.Based on current results,the modified incremental-iterative method allows efficiently assessing the hull girder ultimate strength,combined with pitting corrosion wastage,so revealing useful both in the design process of new vessels and in the structural health monitoring of aged ships.展开更多
Floor diaphragms may provide an effective solution for reducing the seismic vulnerability of masonry buildings. Unfortunately, diaphragms are usually not present in historical building with wooden floors but often the...Floor diaphragms may provide an effective solution for reducing the seismic vulnerability of masonry buildings. Unfortunately, diaphragms are usually not present in historical building with wooden floors but often they are non present even in old R/C buildings where floors were made without shear reinforcement. A possible strengthening technique could be based on the application of a thin concrete plate reintbrced with a welded mesh. In order to reduce the thickness of the plate, some suitable solutions may be obtained by using Fiber Reinforced Concrete (FRC) since the minimum concrete cover is no longer required because the reinforcement (fibers) is spread all over the concrete matrix. The adoption of FRC floor diaphragms is proposed and discussed in this paper; the early results from a preliminary numerical study are analyzed in order to asses the feasibility of this new strengthening technique and better organize an experimental program that is currently in progress.展开更多
This paper presents comparison of numerical models used in an analysis of a road bridge deck. The models were adapted for computing the live load distribution coefficients in composite concrete bridge deck. The load d...This paper presents comparison of numerical models used in an analysis of a road bridge deck. The models were adapted for computing the live load distribution coefficients in composite concrete bridge deck. The load distribution method was chosen for assessment of the usability of different numerical model in slab bridge deck analysis. The goal of the study is to determine a simplest but still accurate numerical model to estimate live load effects on composite slab bridge. In the analysis, the well-established grillage approach was adapted for representation of the bridge deck as a basic model as well as more sophisticated three-dimensional models which was supposed to better represent the real behavior of the deck under concentrated wheel loads. The bridge deck was effectively modeled using beam and shell elements. The grillage method compares well with the finite-element method. This finding is allowed to establish simplification in numerical modeling of slab bridge decks for live load effect computations.展开更多
The numerical method for computing the live load distribution coefficients in bridge decks is presented. The grillage analogy for representation of bridge decks is adopted in determining the general behavior under tra...The numerical method for computing the live load distribution coefficients in bridge decks is presented. The grillage analogy for representation of bridge decks is adopted in determining the general behavior under traffic loads. The principles of Maxwell's reciprocal theorem are developed in computing live load distribution coefficients and their influence lines. The presented method uses the approach developed in traditional methods of transversal live load distribution but bridge decks are modeled more realistic with the help of well-established grillage analogy. Simple numerical programs for grillage analysis can be used and no special software is needed. While computing the distribution coefficients for a bridge deck the rest of the analysis can be performed with habitual procedures of structural mechanics.展开更多
基金Item Sponsored by Youth Science Technology Elitist Foundation of Dalian Local Government (2001-122)
文摘An FE model was developed to study thermal behavior during the rod and wire hot continuous rolling process. The FE code MSC. Marc was used in the simulation using implicit static arithmetic. The whole rolling process of 30 passes was separated and simulated with several continuous 3D elastic-plastic FE models. A rigid pushing body and a data transfer technique were introduced into this model. The on-line experiments were conducted on 304 stainless steel and GCr15 steel hot continuous rolling process to prove the results of simulation by implicit static FEM. The results show that the temperature results of finite element simulations are in good agreement with experiments, which indicate that the FE model developed in this study is effective and efficient.
文摘The aim of this paper is to model the steady-state condition of a rotary shaft seal (RSS) system. For this, an iterative thermal-mechanical algorithm was developed based on incremental finite element analyzes. The behavior of the seal’s rubber material was taken into account by a large-strain viscoelastic, so called generalized Maxwell model, based on Dynamic Mechanical Thermal Analyses (DMTA) and tensile measurements. The pre-loaded garter spring was modelled with a bilinear material model and the shaft was assumed to be linear elastic. The density, coefficient of thermal expansion and the thermal conductance of the materials were taken into consideration during simulation. The friction between the rotary shaft seal and the shaft was simplified and modelled as a constant parameter. The iterative algorithm was evaluated at two different times, right after assembly and 1 h after assembly, so that rubber material’s stress relaxation effects are also incorporated. The results show good correlation with the literature data, which state that the permissible temperature for NBR70 (nitrile butadiene rubber) material contacting with ~80 mm shaft diameter, rotating at 2600/min is 100°C. The results show 107°C and 104°C for the two iterations. The effect of friction induced temperature, changes the width of the contact area between the seal and the shaft, and significantly reduces the contact pressure.
文摘In this paper, the mechanical strength of the toroidal field (TF) magnets of HT-7U with the electromagnetic force in different magnetic fields is emphatically analyzed by means of finite element method. The model and feasible method of computation are put forward. Some important conclusions are made available for reference in the design and construction of TF for HT-7U.
基金supported by the Swedish Energy Agency(Grant Nos.42684-2,P2022-00209).
文摘The storage of hydrogen gas in lined rock caverns(LRCs)may enable the implementation of the firstlarge-scale fossil-free steelmaking process in Sweden,but filling such storage causes joints in the rockmass to open,concentrating strains in the lining.The structural interaction between the LRC componentsmust be able to reduce the strain concentration in the sealing steel lining;however,this interaction iscomplex and difficult to predict with analytical methods.In this paper,the strain concentration in LRCsfrom the opening of rock joints is studied using finite element(FE)analyses,where the large-and small-scale deformation behaviors of the LRC are coupled.The model also includes concrete crack initiation anddevelopment with increasing gas pressure and rock joint width.The interaction between the jointed rockmass and the reinforced concrete,the sliding layer,and the steel lining is demonstrated.The results showthat the rock mass quality and the spacing of the rock joints have the greatest influence on the straindistributions in the steel lining.The largest effect of rock joints on the maximum strains in the steellining was observed for geological conditions of“good”quality rock masses.
文摘Aim To analyse the static temperature field ofthe solid rubber tire(SRT).Methods The mechanical and thermal FE models were developed and analyzed respectively with the FE software ANSYS.Results The maximum temperature becomes higher with the higher with the higher velocity of tire and scales down slightly with the higher convection coefficients.The mixed models are reasonable.Conclusion The study on static temperature field is important and reasonable.It gives the fundament for life analysis of SRT.
基金Project(2013DFR50330)supported by the International Cooperation Project of Science and Technology Ministry of China
文摘The effects of cell wall property on the compressive performance of high porosity, closed-cell aluminum foams prepared by gas injection method were investigated. The research was conducted both experimentally and numerically. Foam specimens prepared from conditioned melt were tested under uniaxial compressive loading condition. The cell wall microstructure and fracture were observed through optical microscope(OM) and scanning electron microscope(SEM), which indicates that the cell wall property is impaired by the defects in cell walls and oxide films on the cell wall surface. Subsequently, finite element(FE) models based on three-dimensional thin shell Kelvin tetrakaidecahedron were developed based on the mechanical properties of the raw material and solid material that are determined by using experimental measurements. The simulation results show that the plateau stress of the nominal stress-strain curve exhibits a linear relationship with the yield strength of the cell wall material. The simulation plateau stress is higher than the experimental data, partly owing to the substitution of solid material for cell wall material in the process of the establishment of FE models.
文摘The Liquine-Ofqui Fault Zone(LOFZ) of southern Chilean Andes is one of the largest active strike-slip fault zones.There is an ongoing debate regarding the origin of the stress field along the LOFZ due to its complex geometry.This paper represents a study of the origins of the LOFZ regional stress field.Stress fields are calculated by finite element(FE) analysis.The two possible stress origins, i.e., oblique plate convergence and ridge collision/indenter tectonics of Chile ridge against Peru-Chile trench, have been emphasized in the present study.Three types of boundary conditions for the three particular models have been applied to calculate stress fields.Models are assumed to be elastic and plane stress condition.Modeling results are presented in terms of four parameters, i.e., orientation of maximum horizontal stress(σ H max ), displacement vector, s train distribution, and maximum shear stress(τmax ) contour line within the model.The results of the first model with oblique plate convergence show inconsistency between the geometric shape of the LOFZ and the distribution of the four parameters.Although more realistic results are obtained from the second model with normal ridge collision, there are few coincident in the LOFZ geometry and regional stress field.The third model with normal and oblique ridge collision is reasonable in understanding the origin of stress field and geometrical condition in the lithosphere of the LOFZ.
基金the National Natural Science Foundation of China(Grant No.51705287)the Scientific Research Foundation of Hubei Provincial Education Department(Grant No.D20211203).
文摘Finite element (FE) coupled thermal-mechanical analysis is widely used to predict the deformation and residualstress of wire arc additive manufacturing (WAAM) parts. In this study, an innovative single-layermulti-bead profilegeometric modeling method through the isosceles trapezoid function is proposed to build the FE model of theWAAMprocess. Firstly, a straight-line model for overlapping beads based on the parabola function was establishedto calculate the optimal center distance. Then, the isosceles trapezoid-based profile was employed to replace theparabola profiles of the parabola-based overlapping model to establish an innovative isosceles trapezoid-basedmulti-bead overlapping geometric model. The rationality of the isosceles trapezoid-based overlapping model wasconfirmed by comparing the geometric deviation and the heat dissipation performance index of the two overlappingmodels. In addition, the FE-coupled thermal-mechanical analysis, as well as a comparative experiment of thesingle-layer eight-bead deposition process show that the simulation results of the above two models agree with theexperimental results. At the same time, the proposed isosceles trapezoid-based overlappingmodels are all straightlineprofiles, which can be divided into high-quality FE elements. It can improve the modeling efficiency andshorten the simulation calculation time. The innovative modeling method proposed in this study can provide anefficient and high-precision geometricmodelingmethod forWAAMpart FE coupled thermal-mechanical analysis.
基金This research was funded by National Natural Science Foundation of China(Grant No.11972247).
文摘Microdamage is produced in bone tissue under the long-termeffects of physiological loading,as well as age,disease and other factors.Bone remodeling can repair microdamage,otherwise this damage will undermine bone quality and even lead to fractures.In this paper,the damage variable was introduced into the remodeling algorithm.The new remodeling algorithm contains a quadratic term that can simulate reduction in bone density after large numbers of loading cycles.The model was applied in conjunction with the 3Dfinite elementmethod(FEM)to the remodeling of the proximal femur.The results showed that the initial accumulation of fatigue damage led to an increase in density but when the damage reached a certain level,the bone density decreased rapidly until the femur failed.With the accumulation of damage,bone remodeling was coupled with fatigue damage to maintain the function of bone.When the accumulation of damage reached a certain level,bone remodeling failed to repair the accumulated fatigue damage in time,and continued cyclic loading significantly weakened the loadbearing capacity of the bone.The new mathematical model not only predicts fatigue life,but also helps to further understand the compromise between damage repair and damage accumulation,which is of great significance for the prevention and treatment of clinical bone diseases.
文摘The transferability of the toughness results in ductile-brittle transition region for welded cracked specimens is conducted by 3D FE analysis. The fracture toughness Values for the double edge notched tension specimens are predicted effectively from the bend test results based on the local approach considering stable crack growth. It is found that the cell model gives a good description of the stable crack growth behavior, and the local approach is useful for the transferability analysis of fracture toughness results in ductile-brittle transition region.
文摘A compressive design and analysis of a turbofan engine is presented in this paper. The components of jet engine have been analyzed based on mechanical design concept. An attempt has been to select materials based on sustainability and green design considerations. The energy content (e) of the materials has been one of the parameters for material selection. The choice of material has a substantial impact on cost, manuthcturing process, and the life cycle efficiency. All components nose cone, fan blade, inlet shaft, including compressor has been solid modeled using Siemens NX 11.0 CAD software. The finite element analysis of every component was performed and found safe. A tolerance analysis was performed before assembly of the turbofan engine. A numerical analysis was completed on blade and inlet geometries to determine a more efficient turbofan engine. Thermal analysis was executed oi1 the cone and suitable corrections were made. Finally, the cost and the total energy were estimated to show how much energy is needed to manufacture a turbofan jet engine.
基金supported by the National Natural Science Foundation of China(No.11002010)
文摘A new continuum damage mechanics model for fretting fatigue life prediction is established. In this model, the damage evolution rate is described by two kinds of quantities. One is associated with the cyclic stress characteristics obtained by the finite element (FE) analysis, and the other is associated with the material fatigue property identified from the fatigue test data of standard specimens. The wear is modeled by the energy wear law to simulate the contact geometry evolution. A two-dimensional (2D) plane strain FE implementation of the damage mechanics model and the energy wear model is presented in the platform of ABAQUS to simulate the evolutions of the fatigue damage and the wear scar. The effect of the specimen thickness is also investigated. The predicted results of the crack initiation site and the fretting fatigue life agree well with available experimental data. Comparisons are made with the critical plane Smith- Watson-Topper (SWT) method.
基金the 2021 Annual Instructional Science and Technology Program of Yongzhou(No.2021YZKJ09)the Science Research Project of Hunan Institute of Science and Technology(No.21xky040)。
文摘A theoretical model concerning active Q-switching of an Fe:ZnSe laser pumped by a continuous-wave(CW)2.8μm fiber laser is developed.Calculations are compared with the recently reported experiment results,and good agreement is achieved.Effects of principal parameters,including pump power,output reflectivity,ion concentration and temperature of crystal,on the laser output performance are investigated and analyzed.Numerical results demonstrate that similar to highly efficient CWFe:ZnSe laser,low temperature of the crystal is significant to obtain high peak power Q-switched pulses.The numerical simulation results are useful for optimizing the design of actively Q-switched Fe:ZnSe laser.
基金This work was supported bythe Researchand Development Project of the Ministry of Communications of China (GrantNo.2003329C01010)
文摘During the construction of the guiding dike in the Yangtze Estuary, some of the caisson structures sank into the soil for 1 -5 m or slid about 20 m away from the original place when a strong storm attacked this area. Dynamic triaxial tests were carried out to simulate the behavior of foundation soils under wave loading. The test results show that the excessive settlement and lateral movement of the caissons are due to the weakening of the soft clay strength during the strong storm. The test results also show that the ability of the soft clay to resist the wave force will be greatly increased when the soft soil samples are suitably improved. Based on the test results, an improvement method combining vertical drains with surcharge loading was proposed to strengthen the foundation soil. On the improved soil foundation, the dike has been reconstructed and undergone several strong storms without any damage. A finite element approach has been developed for analyzing the settlement and stability of the dike under the action of strong storm.
文摘To study the distribution and dissipation of braking power of wet multidisc brake and determine thermal load and thermal flux distribution between mated discs, the concept of distributing brake power four times was put forward. The third and the fourth distribution of brake power were calculated by using finite element(FE) software ANSYS. The third and the fourth distribution of wet multidisc brake are mainly related to material characteristics of discs during emergency braking, while most of the braking power is carried off during continuous braking. Basis is provided for further analysis of disc failure and applicability of different friction materials.
基金This research was supported by the National Key Research and Development Program of China(Grant No.2017YFC0703502)the National Natural Science Foundation of China(Grant No.51608433)+2 种基金the Key Lab of Plateau Building and Eco-Community in Qinghai(KLKF-2020-001)the Shaanxi Province Youth Science and Technology New Star Program(Grant No.2019KJXX-040)These financial supports are greatly acknowledged.
文摘Bamboo is a renewable and environmentally friendly material often used for construction.This study investigates the flexural behavior of bamboo beams through theoretical and finite element(FE)analyses.Considering the material’s nonlinearity,a method of calculating load-deflection curves is proposed and validated via FE analysis.The interfacial slippage dominated by the shear stiffness of the interface between two bamboo poles significantly influences the flexural behavior of double-pole bamboo beams.Thus,the load-deflection curves for different shear stiffnesses can be obtained via theoretical and FE analyses.Subsequently,a novel configuration using diagonal steel bands to avoid slippage is presented.An inclination angle of 45°is suggested to adequately develop the stiffness and bearing capacity of the steel band.
基金Open access funding provided by Universita Parthenope di Napoli within the CRUI-CARE Agreement.
文摘The paper focuses on the assessment of the hull girder ultimate strength,combined with random pitting corrosion wastage,by the incremental-iterative method.After a brief review about the state of art,the local ultimate strength of pitted platings under uniaxial compression is preliminarily outlined and subsequently a closed-form design formula is endorsed in the Rule incremental-iterative method,to account for pitting corrosion wastage in the hull girder ultimate strength check.The ISSC bulk carrier is assumed as reference ship in a benchmark study,devoted to test the effectiveness of the incremental-iterative method,by a comparative analysis with a set of FE simulations,performed by Ansys Mechanical APDL.Four reference cases,with different locations of pitting corrosion wastage,are investigated focusing on nine combinations of pitting and corrosion intensity degrees.Finally,a comparative analysis between the hull girder ultimate strength,combined with pitting corrosion wastage,and the relevant values,complying with the Rule net scantling approach,is performed.Based on current results,the modified incremental-iterative method allows efficiently assessing the hull girder ultimate strength,combined with pitting corrosion wastage,so revealing useful both in the design process of new vessels and in the structural health monitoring of aged ships.
文摘Floor diaphragms may provide an effective solution for reducing the seismic vulnerability of masonry buildings. Unfortunately, diaphragms are usually not present in historical building with wooden floors but often they are non present even in old R/C buildings where floors were made without shear reinforcement. A possible strengthening technique could be based on the application of a thin concrete plate reintbrced with a welded mesh. In order to reduce the thickness of the plate, some suitable solutions may be obtained by using Fiber Reinforced Concrete (FRC) since the minimum concrete cover is no longer required because the reinforcement (fibers) is spread all over the concrete matrix. The adoption of FRC floor diaphragms is proposed and discussed in this paper; the early results from a preliminary numerical study are analyzed in order to asses the feasibility of this new strengthening technique and better organize an experimental program that is currently in progress.
文摘This paper presents comparison of numerical models used in an analysis of a road bridge deck. The models were adapted for computing the live load distribution coefficients in composite concrete bridge deck. The load distribution method was chosen for assessment of the usability of different numerical model in slab bridge deck analysis. The goal of the study is to determine a simplest but still accurate numerical model to estimate live load effects on composite slab bridge. In the analysis, the well-established grillage approach was adapted for representation of the bridge deck as a basic model as well as more sophisticated three-dimensional models which was supposed to better represent the real behavior of the deck under concentrated wheel loads. The bridge deck was effectively modeled using beam and shell elements. The grillage method compares well with the finite-element method. This finding is allowed to establish simplification in numerical modeling of slab bridge decks for live load effect computations.
文摘The numerical method for computing the live load distribution coefficients in bridge decks is presented. The grillage analogy for representation of bridge decks is adopted in determining the general behavior under traffic loads. The principles of Maxwell's reciprocal theorem are developed in computing live load distribution coefficients and their influence lines. The presented method uses the approach developed in traditional methods of transversal live load distribution but bridge decks are modeled more realistic with the help of well-established grillage analogy. Simple numerical programs for grillage analysis can be used and no special software is needed. While computing the distribution coefficients for a bridge deck the rest of the analysis can be performed with habitual procedures of structural mechanics.