The dependences of the power loss per cycle on frequency have been investigated in the ranges of 100 Hz<= f<=25000 Hz and 0.1 T< =Bm <=1.0 T for three main original magnetic states in five sorts of Fe-base...The dependences of the power loss per cycle on frequency have been investigated in the ranges of 100 Hz<= f<=25000 Hz and 0.1 T< =Bm <=1.0 T for three main original magnetic states in five sorts of Fe-based nanocrystalline soft magnetic alloys. The measured and calculated results showed that the total power loss per cycle clearly exhibited a nonlinear behavior in the range below 3 kHz~5 kHz depending on both the magnetic state and the value of Dm, whereas it showed a quasi-linear behavior above this range. The total loss was decomposed into hysteresis loss, classical eddy current loss and excess loss, the obvious nonlinear behavior has been confirmed to be completely determined by the dependence of the excess loss on frequency. It has been indicated that the change rate of the excess loss per cycle with respect to frequency sharp decreases with increasing frequency in the range below about 3 kHz~5 kHz, wherease the rate of change slowly varies above this range, thus leading to the quasilinear behavior of the total loss per cycle. In this paper, some linear expressions of the total loss per cycle has been given in a wider medium-frequency segment, which can be used for roughly estimating the total loss.展开更多
The dependences of the power loss per cycle on frequency f and amplitude flux density Bm have been investigated for the three main original magnetic states in five sorts of Fe-based nanocrystalline soft magnetic alloy...The dependences of the power loss per cycle on frequency f and amplitude flux density Bm have been investigated for the three main original magnetic states in five sorts of Fe-based nanocrystalline soft magnetic alloys in the ranges of 10 Hz<=f<=1000 Hz and 0.4 T<= Bm <=1.0 T. The total loss P is decomposed into the sum of the hysteresis loss Physt, the classical eddy current loss Pel and the excess loss Pexc. Physt has been found to be proportional to Bm^2 and f. The behavior of Pexc/f vs f being equivalent to P/f vs f clearly exhibits nonlinearity in the range not more than about 120 Hz, whereas the behavior of P/f vs f roughly shows linearity in the range far above 100 Hz and not more than 1000 Hz. In the range up to 1000 Hz, Physt is dominant in the original high permeability state and the state of low residual flux density, whereas Pexc in the state of high residual flux density is dominant in the wider range above about 100 Hz. The framework of the statistical theory of power loss has been used for representing the behavior of Pexc/f vs f. It has been found that the number n of the simultaneously active 'Magnetic Objects' linearly varies as n = n0 + Hexc/H0 as a function of the dynamic field Hexc in the range below about 120 Hz, whereas n approximately follows a law of the form n = n0 + (Hexc/H0)^m with 1 < m < 2 in the range far above 100 Hz and not more than 1000 Hz. The values of the field HO in principle related to the microstructure and the domain structure have been calculated for the three states.展开更多
200 nm thick Fe-N magnetic thin films were deposited on glass substrates by RF sputtering. The as-deposited films have high saturation magnetization but their coercivity is also higher than what is needed Therefore it...200 nm thick Fe-N magnetic thin films were deposited on glass substrates by RF sputtering. The as-deposited films have high saturation magnetization but their coercivity is also higher than what is needed Therefore it is very important to reduce coercivity. The samples were vacuum annealed at 250℃ under 12000 A/m magnetic field. When the N content was in the range of 5-7 at. pct, the thin films consisted of α' +α' after heat treatment and had excellent soft magnetic properties of 4πMs=2.4 T, HC <80 A/m. However, the thickness of a recording head was 2μm, and Hc increased as thickness increased. In order to reduce the Hc, the sputtering power was raised from 200 W to 1000 W to reduce the grain size. 2μm Fe-N thin films were vacuum annealed under the same condition, when the N content was in the range of 5.9-8.5 at. pct, the thin films kept its excellent magnetic properties of 4πMs=2.2 T, HC <80 A/m. The properties of the films meet the need of a recording head material used in the dual-element GMR/inductive heads.展开更多
Microstructures and magnetic properties of Fe84Nb7B9,Fe80Ti8B 12 and Fe32Ni36(Nb/V)7Si8B17 powders and their bulk alloys prepared by mechanical alloying(MA) method and hot-press sintering were studied. The results...Microstructures and magnetic properties of Fe84Nb7B9,Fe80Ti8B 12 and Fe32Ni36(Nb/V)7Si8B17 powders and their bulk alloys prepared by mechanical alloying(MA) method and hot-press sintering were studied. The results show that: 1) After MA for 20 h,nanocrystalline bcc singl e phase supersaturated solid solution forms in Fe84-Nb7B9 and Fe8 0Ti8B12 alloys,amorphous structure forms in Fe32Ni36Nb7 Si8B17 alloy,duplex microstructure composed of nanocrystalline γ- (FeNi) supersaturated solid solution and trace content of Fe2B phase forms in Fe32Ni36-V7Si8B17 alloy. 2) The decomposition process of supersaturated solid solution phases in Fe84Nb7B9 and Fe80Ti8B 12 alloys happens at 710780 ℃,crystallization reaction in Fe (32)Ni36Nb7Si8B17 alloy happens at 530 ℃(the temperature of peak value) and residual amorphous crystallized further happens at 760 ℃ (the temperature of peak value),phase decomposition process of supersaturated solid solution at 780 ℃ (the temperature of peak value) and crystallization reaction at 431 ℃ (the temperature of peak value) happens in Fe32Ni36V7S i8B17 alloy. 3) under 900 ℃,30 MPa,(0.5 h) hot-press sintering conditions,bulk alloys with high relative density(94.7%95.8%) can be ob tained. Except that the grain size of Fe84Nb7B9 bulk alloy is large,s uperfine grains (grain size 50200 nm) are obtained in other alloys. Exc ept that single phase microstructure is obtained in Fe80Ti8B12 bul k alloy,multi-phase microstructures are obtained in other alloys. 4) The magne tic properties of Fe80Ti8B12bulk alloy(Bs=1.74 T,Hc= 4.35 kA/m) are significantly superior to those of other bulk alloys,which is r elated to the different phases of nanocrystalline or amorphous powder formed dur ing hot-press sintering process and grain size.展开更多
文摘The dependences of the power loss per cycle on frequency have been investigated in the ranges of 100 Hz<= f<=25000 Hz and 0.1 T< =Bm <=1.0 T for three main original magnetic states in five sorts of Fe-based nanocrystalline soft magnetic alloys. The measured and calculated results showed that the total power loss per cycle clearly exhibited a nonlinear behavior in the range below 3 kHz~5 kHz depending on both the magnetic state and the value of Dm, whereas it showed a quasi-linear behavior above this range. The total loss was decomposed into hysteresis loss, classical eddy current loss and excess loss, the obvious nonlinear behavior has been confirmed to be completely determined by the dependence of the excess loss on frequency. It has been indicated that the change rate of the excess loss per cycle with respect to frequency sharp decreases with increasing frequency in the range below about 3 kHz~5 kHz, wherease the rate of change slowly varies above this range, thus leading to the quasilinear behavior of the total loss per cycle. In this paper, some linear expressions of the total loss per cycle has been given in a wider medium-frequency segment, which can be used for roughly estimating the total loss.
基金National Amorphous and Nanocrystalline Alloy Engineering Researeh Cease
文摘The dependences of the power loss per cycle on frequency f and amplitude flux density Bm have been investigated for the three main original magnetic states in five sorts of Fe-based nanocrystalline soft magnetic alloys in the ranges of 10 Hz<=f<=1000 Hz and 0.4 T<= Bm <=1.0 T. The total loss P is decomposed into the sum of the hysteresis loss Physt, the classical eddy current loss Pel and the excess loss Pexc. Physt has been found to be proportional to Bm^2 and f. The behavior of Pexc/f vs f being equivalent to P/f vs f clearly exhibits nonlinearity in the range not more than about 120 Hz, whereas the behavior of P/f vs f roughly shows linearity in the range far above 100 Hz and not more than 1000 Hz. In the range up to 1000 Hz, Physt is dominant in the original high permeability state and the state of low residual flux density, whereas Pexc in the state of high residual flux density is dominant in the wider range above about 100 Hz. The framework of the statistical theory of power loss has been used for representing the behavior of Pexc/f vs f. It has been found that the number n of the simultaneously active 'Magnetic Objects' linearly varies as n = n0 + Hexc/H0 as a function of the dynamic field Hexc in the range below about 120 Hz, whereas n approximately follows a law of the form n = n0 + (Hexc/H0)^m with 1 < m < 2 in the range far above 100 Hz and not more than 1000 Hz. The values of the field HO in principle related to the microstructure and the domain structure have been calculated for the three states.
基金supported by the National Natural Science Foundation of China under grant No.19890310
文摘200 nm thick Fe-N magnetic thin films were deposited on glass substrates by RF sputtering. The as-deposited films have high saturation magnetization but their coercivity is also higher than what is needed Therefore it is very important to reduce coercivity. The samples were vacuum annealed at 250℃ under 12000 A/m magnetic field. When the N content was in the range of 5-7 at. pct, the thin films consisted of α' +α' after heat treatment and had excellent soft magnetic properties of 4πMs=2.4 T, HC <80 A/m. However, the thickness of a recording head was 2μm, and Hc increased as thickness increased. In order to reduce the Hc, the sputtering power was raised from 200 W to 1000 W to reduce the grain size. 2μm Fe-N thin films were vacuum annealed under the same condition, when the N content was in the range of 5.9-8.5 at. pct, the thin films kept its excellent magnetic properties of 4πMs=2.2 T, HC <80 A/m. The properties of the films meet the need of a recording head material used in the dual-element GMR/inductive heads.
文摘Microstructures and magnetic properties of Fe84Nb7B9,Fe80Ti8B 12 and Fe32Ni36(Nb/V)7Si8B17 powders and their bulk alloys prepared by mechanical alloying(MA) method and hot-press sintering were studied. The results show that: 1) After MA for 20 h,nanocrystalline bcc singl e phase supersaturated solid solution forms in Fe84-Nb7B9 and Fe8 0Ti8B12 alloys,amorphous structure forms in Fe32Ni36Nb7 Si8B17 alloy,duplex microstructure composed of nanocrystalline γ- (FeNi) supersaturated solid solution and trace content of Fe2B phase forms in Fe32Ni36-V7Si8B17 alloy. 2) The decomposition process of supersaturated solid solution phases in Fe84Nb7B9 and Fe80Ti8B 12 alloys happens at 710780 ℃,crystallization reaction in Fe (32)Ni36Nb7Si8B17 alloy happens at 530 ℃(the temperature of peak value) and residual amorphous crystallized further happens at 760 ℃ (the temperature of peak value),phase decomposition process of supersaturated solid solution at 780 ℃ (the temperature of peak value) and crystallization reaction at 431 ℃ (the temperature of peak value) happens in Fe32Ni36V7S i8B17 alloy. 3) under 900 ℃,30 MPa,(0.5 h) hot-press sintering conditions,bulk alloys with high relative density(94.7%95.8%) can be ob tained. Except that the grain size of Fe84Nb7B9 bulk alloy is large,s uperfine grains (grain size 50200 nm) are obtained in other alloys. Exc ept that single phase microstructure is obtained in Fe80Ti8B12 bul k alloy,multi-phase microstructures are obtained in other alloys. 4) The magne tic properties of Fe80Ti8B12bulk alloy(Bs=1.74 T,Hc= 4.35 kA/m) are significantly superior to those of other bulk alloys,which is r elated to the different phases of nanocrystalline or amorphous powder formed dur ing hot-press sintering process and grain size.