In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a gene...In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a generalised Hellinger-Reissner(HR)variational principle,creating an implicit PFEM formulation.To mitigate the volumetric locking issue in low-order elements,we employ a node-based strain smoothing technique.By discretising field variables at the centre of smoothing cells,we achieve nodal integration over cells,eliminating the need for sophisticated mapping operations after re-meshing in the PFEM.We express the discretised governing equations as a min-max optimisation problem,which is further reformulated as a standard second-order cone programming(SOCP)problem.Stresses,pore water pressure,and displacements are simultaneously determined using the advanced primal-dual interior point method.Consequently,our numerical model offers improved accuracy for stresses and pore water pressure compared to the displacement-based PFEM formulation.Numerical experiments demonstrate that the N-PFEM efficiently captures both transient and long-term hydro-mechanical behaviour of saturated soils with high accuracy,obviating the need for stabilisation or regularisation techniques commonly employed in other nodal integration-based PFEM approaches.This work holds significant implications for the development of robust and accurate numerical tools for studying saturated soil dynamics.展开更多
For singularly perturbed convection-diffusion problems,supercloseness analysis of the finite element method is still open on Bakhvalov-type meshes,especially in the case of 2D.The difficulties arise from the width of ...For singularly perturbed convection-diffusion problems,supercloseness analysis of the finite element method is still open on Bakhvalov-type meshes,especially in the case of 2D.The difficulties arise from the width of the mesh in the layer adjacent to the transition point,resulting in a suboptimal estimate for convergence.Existing analysis techniques cannot handle these difficulties well.To fill this gap,here a novel interpolation is designed delicately for the smooth part of the solution,bringing about the optimal supercloseness result of almost order 2 under an energy norm for the finite element method.Our theoretical result is uniform in the singular perturbation parameterεand is supported by the numerical experiments.展开更多
A new approach for flexoelectricmaterial shape optimization is proposed in this study.In this work,a proxymodel based on artificial neural network(ANN)is used to solve the parameter optimization and shape optimization...A new approach for flexoelectricmaterial shape optimization is proposed in this study.In this work,a proxymodel based on artificial neural network(ANN)is used to solve the parameter optimization and shape optimization problems.To improve the fitting ability of the neural network,we use the idea of pre-training to determine the structure of the neural network and combine different optimizers for training.The isogeometric analysis-finite element method(IGA-FEM)is used to discretize the flexural theoretical formulas and obtain samples,which helps ANN to build a proxy model from the model shape to the target value.The effectiveness of the proposed method is verified through two numerical examples of parameter optimization and one numerical example of shape optimization.展开更多
The energy norm convergence rate of the finite element solution of the heat equation is reduced by the time-regularity of the exact solution. This paper presents an adaptive finite element treatment of time-dependent ...The energy norm convergence rate of the finite element solution of the heat equation is reduced by the time-regularity of the exact solution. This paper presents an adaptive finite element treatment of time-dependent singularities on the one-dimensional heat equation. The method is based on a Fourier decomposition of the solution and an extraction formula of the coefficients of the singularities coupled with a predictor-corrector algorithm. The method recovers the optimal convergence rate of the finite element method on a quasi-uniform mesh refinement. Numerical results are carried out to show the efficiency of the method.展开更多
Magneto-electro-elastic (MEE) materials, a new type of composite intelligent materials, exhibit excellent multifield coupling effects. Due to the heterogeneity of the materials, it is challenging to use the traditiona...Magneto-electro-elastic (MEE) materials, a new type of composite intelligent materials, exhibit excellent multifield coupling effects. Due to the heterogeneity of the materials, it is challenging to use the traditional finite element method (FEM) for mechanical analysis. Additionally, the MEE materials are often in a complex service environment, especially under the influence of the thermal field with thermoelectric and thermomagnetic effects, which affect its mechanical properties. Therefore, this paper proposes the efficient multiscale computational method for the multifield coupling problem of heterogeneous MEE structures under the thermal environment. The method constructs a multi-physics field with numerical base functions (the displacement, electric potential, and magnetic potential multiscale base functions). It equates a single cell of heterogeneous MEE materials to a macroscopic unit and supplements the macroscopic model with a microscopic model. This allows the problem to be solved directly on a macroscopic scale. Finally, the numerical simulation results demonstrate that compared with the traditional FEM, the multiscale finite element method (MsFEM) can achieve the purpose of ensuring accuracy and reducing the degree of freedom, and significantly improving the calculation efficiency.展开更多
High-performance finite element research has always been a major focus of finite element method studies.This article introduces isogeometric analysis into the finite element method and proposes a new isogeometric fini...High-performance finite element research has always been a major focus of finite element method studies.This article introduces isogeometric analysis into the finite element method and proposes a new isogeometric finite element method.Firstly,the physical field is approximated by uniform B-spline interpolation,while geometry is represented by non-uniform rational B-spline interpolation.By introducing a transformation matrix,elements of types C^(0)and C^(1)are constructed in the isogeometric finite element method.Subsequently,the corresponding calculation formats for one-dimensional bars,beams,and two-dimensional linear elasticity in the isogeometric finite element method are derived through variational principles and parameter mapping.The proposed method combines element construction techniques of the finite element method with geometric construction techniques of isogeometric analysis,eliminating the need for mesh generation and maintaining flexibility in element construction.Two elements with interpolation characteristics are constructed in the method so that boundary conditions and connections between elements can be processed like the finite element method.Finally,the test results of several examples show that:(1)Under the same degree and element node numbers,the constructed elements are almost consistent with the results obtained by traditional finite element method;(2)For bar problems with large local field variations and beam problems with variable cross-sections,high-degree and multi-nodes elements constructed can achieve high computational accuracy with fewer degrees of freedom than finite element method;(3)The computational efficiency of isogeometric finite element method is higher than finite element method under similar degrees of freedom,while as degrees of freedom increase,the computational efficiency between the two is similar.展开更多
In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hy...In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hydraulic fractures in layered porous reservoirs with modulus contrast.The coupled hydromechanical model is first verified against an analytical solution and a laboratory experiment.Then,the fracture geometry(e.g.height,aperture,and area)and fluid pressure evolutions of multiple hydraulic fractures placed in a porous reservoir interbedded with alternating stiff and soft layers are investigated using the model.The stress and pore pressure distributions within the layered reservoir during fluid injection are also presented.The simulation results reveal that stress umbrellas are easily to form among multiple hydraulic fractures’tips when propagating in soft layers,which impedes the simultaneous height growth.It is also observed that the impediment effect of soft layer is much more significant in the fractures suppressed by the preferential growth of adjoining fractures.After that,the combined effect of in situ stress ratio and fracturing spacing on the multi-fracture height growth is presented,and the results elucidate the influence of in situ stress ratio on the height growth behavior depending on the fracture spacing.Finally,it is found that the inclusion of soft layers changes the aperture distribution of outmost and interior hydraulic fractures.The results obtained from this study may provide some insights on the understanding of hydraulic fracture height containment observed in filed.展开更多
Viscoelastic foundation plays a very important role in civil engineering. It can effectively disperse the structural load into the foundation soil and avoid the damage caused by the concentrated load. The model of Eul...Viscoelastic foundation plays a very important role in civil engineering. It can effectively disperse the structural load into the foundation soil and avoid the damage caused by the concentrated load. The model of Euler-Bernoulli beam on viscoelastic Pasternak foundation can be used to analyze the deformation and response of buildings under complex geological conditions. In this paper, we use Hermite finite element method to get the numerical approximation scheme for the vibration equation of viscoelastic Pasternak foundation beam. Convergence and error estimation are rigourously established. We prove that the fully discrete scheme has convergence order O(τ2+h4), where τis time step size and his space step size. Finally, we give four numerical examples to verify the validity of theoretical analysis.展开更多
In this paper, the optimal control problem of parabolic integro-differential equations is solved by gradient recovery based two-grid finite element method. Piecewise linear functions are used to approximate state and ...In this paper, the optimal control problem of parabolic integro-differential equations is solved by gradient recovery based two-grid finite element method. Piecewise linear functions are used to approximate state and co-state variables, and piecewise constant function is used to approximate control variables. Generally, the optimal conditions for the problem are solved iteratively until the control variable reaches error tolerance. In order to calculate all the variables individually and parallelly, we introduce a gradient recovery based two-grid method. First, we solve the small scaled optimal control problem on coarse grids. Next, we use the gradient recovery technique to recover the gradients of state and co-state variables. Finally, using the recovered variables, we solve the large scaled optimal control problem for all variables independently. Moreover, we estimate priori error for the proposed scheme, and use an example to validate the theoretical results.展开更多
This paper focuses on the analytical and numerical asymptotical stability of neutral reaction-diffusion equations with piecewise continuous arguments.First,for the analytical solutions of the equations,we derive their...This paper focuses on the analytical and numerical asymptotical stability of neutral reaction-diffusion equations with piecewise continuous arguments.First,for the analytical solutions of the equations,we derive their expressions and asymptotical stability criteria.Second,for the semi-discrete and one-parameter fully-discrete finite element methods solving the above equations,we work out the sufficient conditions for assuring that the finite element solutions are asymptotically stable.Finally,with a typical example with numerical experiments,we illustrate the applicability of the obtained theoretical results.展开更多
The connecting rod is one of the most important moving components in an internal combustion engine. The present work determined the possibility of using aluminium alloy 7075 material to design and manufacture a connec...The connecting rod is one of the most important moving components in an internal combustion engine. The present work determined the possibility of using aluminium alloy 7075 material to design and manufacture a connecting rod for weight optimisation without losing the strength of the connecting rod. It considered modal and thermal analyses to investigate the suitability of the material for connecting rod design. The parameters that were considered under the modal analysis were: total deformation, and natural frequency, while the thermal analysis looked at the temperature distribution, total heat flux and directional heat flux of the four connecting rods made with titanium alloy, grey cast iron, structural steel and aluminium 7075 alloy respectively. The connecting rod was modelled using Autodesk inventor2017 software using the calculated parameters. The steady-state thermal analysis was used to determine the induced heat flux and directional heat flux. The study found that Aluminium 7075 alloy deformed more than the remaining three other materials but has superior qualities in terms of vibrational natural frequency, total heat flux and lightweight compared to structural steel, grey cast iron and titanium alloy.展开更多
We present a high performance modularly-built open-source software-OpenIFEM.OpenIFEM is a C++implementation of the modified immersed finite element method(mIFEM)to solve fluid-structure interaction(FSI)problems.This s...We present a high performance modularly-built open-source software-OpenIFEM.OpenIFEM is a C++implementation of the modified immersed finite element method(mIFEM)to solve fluid-structure interaction(FSI)problems.This software is modularly built to perform multiple tasks including fluid dynamics(incompressible and slightly compressible fluid models),linear and nonlinear solid mechanics,and fully coupled fluid-structure interactions.Most of open-source software packages are restricted to certain discretization methods;some are under-tested,under-documented,and lack modularity as well as extensibility.OpenIFEM is designed and built to include a set of generic classes for users to adapt so that any fluid and solid solvers can be coupled through the FSI algorithm.In addition,the package utilizes well-developed and tested libraries.It also comes with standard test cases that serve as software and algorithm validation.The software can be built on cross-platform,i.e.,Linux,Windows,and Mac OS,using CMake.Efficient parallelization is also implemented for high-performance computing for large-sized problems.OpenIFEM is documented using Doxygen and publicly available to download on GitHub.It is expected to benefit the future development of FSI algorithms and be applied to a variety of FSI applications.展开更多
The Finite Element Method of Lines (FEMOL) is a semi-analytic approach and takes a position between FEM and analytic methods. First, FEMOL in Fracture Mechanics is presented in detail. Then, the method is applied to...The Finite Element Method of Lines (FEMOL) is a semi-analytic approach and takes a position between FEM and analytic methods. First, FEMOL in Fracture Mechanics is presented in detail. Then, the method is applied to a set of examples such as edge-crack plate, the central-crack plate, the plate with cracks emanating from a hole under tensile or under combination loads of tensile and bending. Their dimensionless stress distribution, the stress intensify factor (SIF) and crack opening displacement (COD) are obtained, and comparison with known solutions by other methods are reported. It is found that a good accuracy is achieved by FEMOL. The method is successfully modified to remarkably increase the accuracy and reduce convergence difficulties. So it is a very useful and new tool in studying fracture mechanics problems.展开更多
The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element ...The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element method(FEM), often face a trade-off between calculation accuracy and efficiency. In this paper, we propose a quasi-smooth manifold element(QSME) method to address this challenge, and provide the accurate and efficient analysis of two-dimensional(2D) anisotropic heat conduction problems in composites with complex geometry. The QSME approach achieves high calculation precision by a high-order local approximation that ensures the first-order derivative continuity.The results demonstrate that the QSME method is robust and stable, offering both high accuracy and efficiency in the heat conduction analysis. With the same degrees of freedom(DOFs), the QSME method can achieve at least an order of magnitude higher calculation accuracy than the traditional FEM. Additionally, under the same level of calculation error, the QSME method requires 10 times fewer DOFs than the traditional FEM. The versatility of the proposed QSME method extends beyond anisotropic heat conduction problems in complex composites. The proposed QSME method can also be applied to other problems, including fluid flows, mechanical analyses, and other multi-field coupled problems, providing accurate and efficient numerical simulations.展开更多
The thermal evolution of the Earth’s interior and its dynamic effects are the focus of Earth sciences.However,the commonly adopted grid-based temperature solver is usually prone to numerical oscillations,especially i...The thermal evolution of the Earth’s interior and its dynamic effects are the focus of Earth sciences.However,the commonly adopted grid-based temperature solver is usually prone to numerical oscillations,especially in the presence of sharp thermal gradients,such as when modeling subducting slabs and rising plumes.This phenomenon prohibits the correct representation of thermal evolution and may cause incorrect implications of geodynamic processes.After examining several approaches for removing these numerical oscillations,we show that the Lagrangian method provides an ideal way to solve this problem.In this study,we propose a particle-in-cell method as a strategy for improving the solution to the energy equation and demonstrate its effectiveness in both one-dimensional and three-dimensional thermal problems,as well as in a global spherical simulation with data assimilation.We have implemented this method in the open-source finite-element code CitcomS,which features a spherical coordinate system,distributed memory parallel computing,and data assimilation algorithms.展开更多
A computational framework for parachute inflation is developed based on the immersed boundary/finite element approach within the open-source IBAMR library.The fluid motion is solved by Peskin's diffuse-interface i...A computational framework for parachute inflation is developed based on the immersed boundary/finite element approach within the open-source IBAMR library.The fluid motion is solved by Peskin's diffuse-interface immersed boundary(IB)method,which is attractive for simulating moving-boundary flows with large deformations.The adaptive mesh refinement technique is employed to reduce the computational cost while retain the desired resolution.The dynamic response of the parachute is solved with the finite element approach.The canopy and cables of the parachute system are modeled with the hyperelastic material.A tether force is introduced to impose rigidity constraints for the parachute system.The accuracy and reliability of the present framework is validated by simulating inflation of a constrained square plate.Application of the present framework on several canonical cases further demonstrates its versatility for simulation of parachute inflation.展开更多
This study introduces an innovative theoretical model critical for predicting stress and strain distributions in Ti/Al bi-metal sheet production and its subsequent deep drawing process.Grounded in extensive mechanical...This study introduces an innovative theoretical model critical for predicting stress and strain distributions in Ti/Al bi-metal sheet production and its subsequent deep drawing process.Grounded in extensive mechanical and geometric analysis,the model facilitates manufacturing process optimization and the production of high-quality components.Finite Element Method(FEM)simulations are integrated to examine the significant effects of die geometric parameters on metal flow dynamics and susceptibility to material stress.The model's precision is enhanced by incorporating anisotropic material properties and cohesive zone models.A rigorous experimental framework validates the model,highlighting the practical utility of optimized parameters in Ti/Al bimetal component fabrication.Additionally,uniaxial tensile tests using the Video Image Correlation-3D(VIC-3D)system provide detailed insights into material deformation,elucidating stress distribution and metal flow in composite layers.Thus,the research presents a refined methodology for the efficient production of Ti/Al bi-metal components,offering valuable knowledge transferable to various materials and processing scenarios.The findings of this work are expected to make a significant impact on material engineering and mechanical manufacturing.展开更多
The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling ...The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling efficiency of underground engineering,a modularized and parametric modeling cloud server is developed by using Python codes.The basic framework of the cloud server is as follows:input the modeling parameters into the web platform,implement Rhino software and FLAC3D software to model and run simulations in the cloud server,and return the simulation results to the web platform.The modeling program can automatically generate instructions that can run the modeling process in Rhino based on the input modeling parameters.The main modules of the modeling program include modeling the 3D geological structures,the underground engineering structures,and the supporting structures as well as meshing the geometric models.In particular,various cross-sections of underground caverns are crafted as parametricmodules in themodeling program.Themodularized and parametric modeling program is used for a finite element simulation of the underground powerhouse of the Shuangjiangkou Hydropower Station.This complicatedmodel is rapidly generated for the simulation,and the simulation results are reasonable.Thus,this modularized and parametric modeling program is applicable for three-dimensional finite element simulations and analyses.展开更多
The goal of this paper is to represent a numerical study of magnetohydrodynamic mixed convection heat transfer in a lid-driven vertical wavy enclosure with a fin attached to the bottomwall.We use a finite elementmetho...The goal of this paper is to represent a numerical study of magnetohydrodynamic mixed convection heat transfer in a lid-driven vertical wavy enclosure with a fin attached to the bottomwall.We use a finite elementmethod based on Galerkin weighted residual(GWR)techniques to set up the appropriate governing equations for the present flow model.We have conducted a parametric investigation to examine the impact of Hartmann and Richardson numbers on the flow pattern and heat transmission features inside a wavy cavity.We graphically represent the numerical results,such as isotherms,streamlines,velocity profiles,local and mean Nusselt numbers,and average surface temperature.Comparisons between the results of this work and previously published work in a literature review have been produced to examine the reliability and consistency of the data.The different sizes of the fin surface significantly impact flow creation and temperature fields.Additionally,the long fin size is necessary to enhance the heat transfer rate on the right surface at large Richardson numbers and low Hartmann numbers.Fin surfaces can significantly increase the mixing of fluid inside the enclosure,which can mean reductions in reaction times and operating costs,along with increases in heat transfer and efficiency.展开更多
The stability study of the ongoing and recurring Amalpata landslide in Baglung in Nepal’s Gandaki Province is presented in this research. The impacted slope is around 200 meters high, with two terraces that have diff...The stability study of the ongoing and recurring Amalpata landslide in Baglung in Nepal’s Gandaki Province is presented in this research. The impacted slope is around 200 meters high, with two terraces that have different slope inclinations. The lower bench, located above the basement, consistently fails and sets others up for failure. The fluctuating water level of the slope, which travels down the slope masses, exacerbates the slide problem. The majority of these rocks are Amalpata landslide area experiences several structural disruptions. The area’s stability must be evaluated in order to prevent and control more harm from occurring to the nearby agricultural land and people living along the slope. The slopes’ failures increase the damages of house existing in nearby area and the erosion of the slope. Two modeling techniques the finite element approach and the limit equilibrium method were used to simulate the slope. The findings show that, in every case, the terrace above the basement is where the majority of the stress is concentrated, with a safety factor of near unity. Using probabilistic slope stability analysis, the failure probability was predicted to be between 98.90% and 100%.展开更多
基金supported by the Swiss National Science Foundation(Grant No.189882)the National Natural Science Foundation of China(Grant No.41961134032)support provided by the New Investigator Award grant from the UK Engineering and Physical Sciences Research Council(Grant No.EP/V012169/1).
文摘In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a generalised Hellinger-Reissner(HR)variational principle,creating an implicit PFEM formulation.To mitigate the volumetric locking issue in low-order elements,we employ a node-based strain smoothing technique.By discretising field variables at the centre of smoothing cells,we achieve nodal integration over cells,eliminating the need for sophisticated mapping operations after re-meshing in the PFEM.We express the discretised governing equations as a min-max optimisation problem,which is further reformulated as a standard second-order cone programming(SOCP)problem.Stresses,pore water pressure,and displacements are simultaneously determined using the advanced primal-dual interior point method.Consequently,our numerical model offers improved accuracy for stresses and pore water pressure compared to the displacement-based PFEM formulation.Numerical experiments demonstrate that the N-PFEM efficiently captures both transient and long-term hydro-mechanical behaviour of saturated soils with high accuracy,obviating the need for stabilisation or regularisation techniques commonly employed in other nodal integration-based PFEM approaches.This work holds significant implications for the development of robust and accurate numerical tools for studying saturated soil dynamics.
基金supported by National Natural Science Foundation of China(11771257)the Shandong Provincial Natural Science Foundation of China(ZR2023YQ002,ZR2023MA007,ZR2021MA004)。
文摘For singularly perturbed convection-diffusion problems,supercloseness analysis of the finite element method is still open on Bakhvalov-type meshes,especially in the case of 2D.The difficulties arise from the width of the mesh in the layer adjacent to the transition point,resulting in a suboptimal estimate for convergence.Existing analysis techniques cannot handle these difficulties well.To fill this gap,here a novel interpolation is designed delicately for the smooth part of the solution,bringing about the optimal supercloseness result of almost order 2 under an energy norm for the finite element method.Our theoretical result is uniform in the singular perturbation parameterεand is supported by the numerical experiments.
基金supported by a Major Research Project in Higher Education Institutions in Henan Province,with Project Number 23A560015.
文摘A new approach for flexoelectricmaterial shape optimization is proposed in this study.In this work,a proxymodel based on artificial neural network(ANN)is used to solve the parameter optimization and shape optimization problems.To improve the fitting ability of the neural network,we use the idea of pre-training to determine the structure of the neural network and combine different optimizers for training.The isogeometric analysis-finite element method(IGA-FEM)is used to discretize the flexural theoretical formulas and obtain samples,which helps ANN to build a proxy model from the model shape to the target value.The effectiveness of the proposed method is verified through two numerical examples of parameter optimization and one numerical example of shape optimization.
文摘The energy norm convergence rate of the finite element solution of the heat equation is reduced by the time-regularity of the exact solution. This paper presents an adaptive finite element treatment of time-dependent singularities on the one-dimensional heat equation. The method is based on a Fourier decomposition of the solution and an extraction formula of the coefficients of the singularities coupled with a predictor-corrector algorithm. The method recovers the optimal convergence rate of the finite element method on a quasi-uniform mesh refinement. Numerical results are carried out to show the efficiency of the method.
文摘Magneto-electro-elastic (MEE) materials, a new type of composite intelligent materials, exhibit excellent multifield coupling effects. Due to the heterogeneity of the materials, it is challenging to use the traditional finite element method (FEM) for mechanical analysis. Additionally, the MEE materials are often in a complex service environment, especially under the influence of the thermal field with thermoelectric and thermomagnetic effects, which affect its mechanical properties. Therefore, this paper proposes the efficient multiscale computational method for the multifield coupling problem of heterogeneous MEE structures under the thermal environment. The method constructs a multi-physics field with numerical base functions (the displacement, electric potential, and magnetic potential multiscale base functions). It equates a single cell of heterogeneous MEE materials to a macroscopic unit and supplements the macroscopic model with a microscopic model. This allows the problem to be solved directly on a macroscopic scale. Finally, the numerical simulation results demonstrate that compared with the traditional FEM, the multiscale finite element method (MsFEM) can achieve the purpose of ensuring accuracy and reducing the degree of freedom, and significantly improving the calculation efficiency.
基金funded by the Zhejiang Province Science and Technology Plan Project under grant number 2023C01069the Hebei Provincial Program on Key Basic Research Project under grant number 23311808Dthe Wenzhou Major Science and Technology Innovation Project of China under grant number ZG2022004。
文摘High-performance finite element research has always been a major focus of finite element method studies.This article introduces isogeometric analysis into the finite element method and proposes a new isogeometric finite element method.Firstly,the physical field is approximated by uniform B-spline interpolation,while geometry is represented by non-uniform rational B-spline interpolation.By introducing a transformation matrix,elements of types C^(0)and C^(1)are constructed in the isogeometric finite element method.Subsequently,the corresponding calculation formats for one-dimensional bars,beams,and two-dimensional linear elasticity in the isogeometric finite element method are derived through variational principles and parameter mapping.The proposed method combines element construction techniques of the finite element method with geometric construction techniques of isogeometric analysis,eliminating the need for mesh generation and maintaining flexibility in element construction.Two elements with interpolation characteristics are constructed in the method so that boundary conditions and connections between elements can be processed like the finite element method.Finally,the test results of several examples show that:(1)Under the same degree and element node numbers,the constructed elements are almost consistent with the results obtained by traditional finite element method;(2)For bar problems with large local field variations and beam problems with variable cross-sections,high-degree and multi-nodes elements constructed can achieve high computational accuracy with fewer degrees of freedom than finite element method;(3)The computational efficiency of isogeometric finite element method is higher than finite element method under similar degrees of freedom,while as degrees of freedom increase,the computational efficiency between the two is similar.
文摘In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hydraulic fractures in layered porous reservoirs with modulus contrast.The coupled hydromechanical model is first verified against an analytical solution and a laboratory experiment.Then,the fracture geometry(e.g.height,aperture,and area)and fluid pressure evolutions of multiple hydraulic fractures placed in a porous reservoir interbedded with alternating stiff and soft layers are investigated using the model.The stress and pore pressure distributions within the layered reservoir during fluid injection are also presented.The simulation results reveal that stress umbrellas are easily to form among multiple hydraulic fractures’tips when propagating in soft layers,which impedes the simultaneous height growth.It is also observed that the impediment effect of soft layer is much more significant in the fractures suppressed by the preferential growth of adjoining fractures.After that,the combined effect of in situ stress ratio and fracturing spacing on the multi-fracture height growth is presented,and the results elucidate the influence of in situ stress ratio on the height growth behavior depending on the fracture spacing.Finally,it is found that the inclusion of soft layers changes the aperture distribution of outmost and interior hydraulic fractures.The results obtained from this study may provide some insights on the understanding of hydraulic fracture height containment observed in filed.
文摘Viscoelastic foundation plays a very important role in civil engineering. It can effectively disperse the structural load into the foundation soil and avoid the damage caused by the concentrated load. The model of Euler-Bernoulli beam on viscoelastic Pasternak foundation can be used to analyze the deformation and response of buildings under complex geological conditions. In this paper, we use Hermite finite element method to get the numerical approximation scheme for the vibration equation of viscoelastic Pasternak foundation beam. Convergence and error estimation are rigourously established. We prove that the fully discrete scheme has convergence order O(τ2+h4), where τis time step size and his space step size. Finally, we give four numerical examples to verify the validity of theoretical analysis.
文摘In this paper, the optimal control problem of parabolic integro-differential equations is solved by gradient recovery based two-grid finite element method. Piecewise linear functions are used to approximate state and co-state variables, and piecewise constant function is used to approximate control variables. Generally, the optimal conditions for the problem are solved iteratively until the control variable reaches error tolerance. In order to calculate all the variables individually and parallelly, we introduce a gradient recovery based two-grid method. First, we solve the small scaled optimal control problem on coarse grids. Next, we use the gradient recovery technique to recover the gradients of state and co-state variables. Finally, using the recovered variables, we solve the large scaled optimal control problem for all variables independently. Moreover, we estimate priori error for the proposed scheme, and use an example to validate the theoretical results.
文摘This paper focuses on the analytical and numerical asymptotical stability of neutral reaction-diffusion equations with piecewise continuous arguments.First,for the analytical solutions of the equations,we derive their expressions and asymptotical stability criteria.Second,for the semi-discrete and one-parameter fully-discrete finite element methods solving the above equations,we work out the sufficient conditions for assuring that the finite element solutions are asymptotically stable.Finally,with a typical example with numerical experiments,we illustrate the applicability of the obtained theoretical results.
文摘The connecting rod is one of the most important moving components in an internal combustion engine. The present work determined the possibility of using aluminium alloy 7075 material to design and manufacture a connecting rod for weight optimisation without losing the strength of the connecting rod. It considered modal and thermal analyses to investigate the suitability of the material for connecting rod design. The parameters that were considered under the modal analysis were: total deformation, and natural frequency, while the thermal analysis looked at the temperature distribution, total heat flux and directional heat flux of the four connecting rods made with titanium alloy, grey cast iron, structural steel and aluminium 7075 alloy respectively. The connecting rod was modelled using Autodesk inventor2017 software using the calculated parameters. The steady-state thermal analysis was used to determine the induced heat flux and directional heat flux. The study found that Aluminium 7075 alloy deformed more than the remaining three other materials but has superior qualities in terms of vibrational natural frequency, total heat flux and lightweight compared to structural steel, grey cast iron and titanium alloy.
文摘We present a high performance modularly-built open-source software-OpenIFEM.OpenIFEM is a C++implementation of the modified immersed finite element method(mIFEM)to solve fluid-structure interaction(FSI)problems.This software is modularly built to perform multiple tasks including fluid dynamics(incompressible and slightly compressible fluid models),linear and nonlinear solid mechanics,and fully coupled fluid-structure interactions.Most of open-source software packages are restricted to certain discretization methods;some are under-tested,under-documented,and lack modularity as well as extensibility.OpenIFEM is designed and built to include a set of generic classes for users to adapt so that any fluid and solid solvers can be coupled through the FSI algorithm.In addition,the package utilizes well-developed and tested libraries.It also comes with standard test cases that serve as software and algorithm validation.The software can be built on cross-platform,i.e.,Linux,Windows,and Mac OS,using CMake.Efficient parallelization is also implemented for high-performance computing for large-sized problems.OpenIFEM is documented using Doxygen and publicly available to download on GitHub.It is expected to benefit the future development of FSI algorithms and be applied to a variety of FSI applications.
文摘The Finite Element Method of Lines (FEMOL) is a semi-analytic approach and takes a position between FEM and analytic methods. First, FEMOL in Fracture Mechanics is presented in detail. Then, the method is applied to a set of examples such as edge-crack plate, the central-crack plate, the plate with cracks emanating from a hole under tensile or under combination loads of tensile and bending. Their dimensionless stress distribution, the stress intensify factor (SIF) and crack opening displacement (COD) are obtained, and comparison with known solutions by other methods are reported. It is found that a good accuracy is achieved by FEMOL. The method is successfully modified to remarkably increase the accuracy and reduce convergence difficulties. So it is a very useful and new tool in studying fracture mechanics problems.
基金Project supported by the National Natural Science Foundation of China (Nos. 12102043, 12072375U2241240)the Natural Science Foundation of Hunan Province of China (Nos. 2023JJ40698 and 2021JJ40710)。
文摘The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element method(FEM), often face a trade-off between calculation accuracy and efficiency. In this paper, we propose a quasi-smooth manifold element(QSME) method to address this challenge, and provide the accurate and efficient analysis of two-dimensional(2D) anisotropic heat conduction problems in composites with complex geometry. The QSME approach achieves high calculation precision by a high-order local approximation that ensures the first-order derivative continuity.The results demonstrate that the QSME method is robust and stable, offering both high accuracy and efficiency in the heat conduction analysis. With the same degrees of freedom(DOFs), the QSME method can achieve at least an order of magnitude higher calculation accuracy than the traditional FEM. Additionally, under the same level of calculation error, the QSME method requires 10 times fewer DOFs than the traditional FEM. The versatility of the proposed QSME method extends beyond anisotropic heat conduction problems in complex composites. The proposed QSME method can also be applied to other problems, including fluid flows, mechanical analyses, and other multi-field coupled problems, providing accurate and efficient numerical simulations.
基金the National Supercomputer Center in Tianjin for their patient assistance in providing the compilation environment.We thank the editor,Huajian Yao,for handling the manuscript and Mingming Li and another anonymous reviewer for their constructive comments.The research leading to these results has received funding from National Natural Science Foundation of China projects(Grant Nos.92355302 and 42121005)Taishan Scholar projects(Grant No.tspd20210305)others(Grant Nos.XDB0710000,L2324203,XK2023DXC001,LSKJ202204400,and ZR2021ZD09).
文摘The thermal evolution of the Earth’s interior and its dynamic effects are the focus of Earth sciences.However,the commonly adopted grid-based temperature solver is usually prone to numerical oscillations,especially in the presence of sharp thermal gradients,such as when modeling subducting slabs and rising plumes.This phenomenon prohibits the correct representation of thermal evolution and may cause incorrect implications of geodynamic processes.After examining several approaches for removing these numerical oscillations,we show that the Lagrangian method provides an ideal way to solve this problem.In this study,we propose a particle-in-cell method as a strategy for improving the solution to the energy equation and demonstrate its effectiveness in both one-dimensional and three-dimensional thermal problems,as well as in a global spherical simulation with data assimilation.We have implemented this method in the open-source finite-element code CitcomS,which features a spherical coordinate system,distributed memory parallel computing,and data assimilation algorithms.
基金supported by the Open Project of Key Laboratory of Aerospace EDLA,CASC(No.EDL19092208)。
文摘A computational framework for parachute inflation is developed based on the immersed boundary/finite element approach within the open-source IBAMR library.The fluid motion is solved by Peskin's diffuse-interface immersed boundary(IB)method,which is attractive for simulating moving-boundary flows with large deformations.The adaptive mesh refinement technique is employed to reduce the computational cost while retain the desired resolution.The dynamic response of the parachute is solved with the finite element approach.The canopy and cables of the parachute system are modeled with the hyperelastic material.A tether force is introduced to impose rigidity constraints for the parachute system.The accuracy and reliability of the present framework is validated by simulating inflation of a constrained square plate.Application of the present framework on several canonical cases further demonstrates its versatility for simulation of parachute inflation.
基金supported by the National Natural Science Foundation of China(No.52005432,51674222)the Natural Science Foundation of Hebei Province of Iron and Steel Research(No.E2021203179)+1 种基金the Chinese Post-doctoral Science Foundation(No.2020M680904)the Foundation of Hebei Province Post-Doctoral Preferred Project(No.B2020003011)。
文摘This study introduces an innovative theoretical model critical for predicting stress and strain distributions in Ti/Al bi-metal sheet production and its subsequent deep drawing process.Grounded in extensive mechanical and geometric analysis,the model facilitates manufacturing process optimization and the production of high-quality components.Finite Element Method(FEM)simulations are integrated to examine the significant effects of die geometric parameters on metal flow dynamics and susceptibility to material stress.The model's precision is enhanced by incorporating anisotropic material properties and cohesive zone models.A rigorous experimental framework validates the model,highlighting the practical utility of optimized parameters in Ti/Al bimetal component fabrication.Additionally,uniaxial tensile tests using the Video Image Correlation-3D(VIC-3D)system provide detailed insights into material deformation,elucidating stress distribution and metal flow in composite layers.Thus,the research presents a refined methodology for the efficient production of Ti/Al bi-metal components,offering valuable knowledge transferable to various materials and processing scenarios.The findings of this work are expected to make a significant impact on material engineering and mechanical manufacturing.
基金The Construction S&T Project of the Department of Transportation of Sichuan Province(Grant No.2023A02)the National Natural Science Foundation of China(No.52109135).
文摘The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling efficiency of underground engineering,a modularized and parametric modeling cloud server is developed by using Python codes.The basic framework of the cloud server is as follows:input the modeling parameters into the web platform,implement Rhino software and FLAC3D software to model and run simulations in the cloud server,and return the simulation results to the web platform.The modeling program can automatically generate instructions that can run the modeling process in Rhino based on the input modeling parameters.The main modules of the modeling program include modeling the 3D geological structures,the underground engineering structures,and the supporting structures as well as meshing the geometric models.In particular,various cross-sections of underground caverns are crafted as parametricmodules in themodeling program.Themodularized and parametric modeling program is used for a finite element simulation of the underground powerhouse of the Shuangjiangkou Hydropower Station.This complicatedmodel is rapidly generated for the simulation,and the simulation results are reasonable.Thus,this modularized and parametric modeling program is applicable for three-dimensional finite element simulations and analyses.
基金the Deanship of Scientific Research at Umm Al-Qura University for supporting this work through Grant Code:22UQU4240002DSR19.
文摘The goal of this paper is to represent a numerical study of magnetohydrodynamic mixed convection heat transfer in a lid-driven vertical wavy enclosure with a fin attached to the bottomwall.We use a finite elementmethod based on Galerkin weighted residual(GWR)techniques to set up the appropriate governing equations for the present flow model.We have conducted a parametric investigation to examine the impact of Hartmann and Richardson numbers on the flow pattern and heat transmission features inside a wavy cavity.We graphically represent the numerical results,such as isotherms,streamlines,velocity profiles,local and mean Nusselt numbers,and average surface temperature.Comparisons between the results of this work and previously published work in a literature review have been produced to examine the reliability and consistency of the data.The different sizes of the fin surface significantly impact flow creation and temperature fields.Additionally,the long fin size is necessary to enhance the heat transfer rate on the right surface at large Richardson numbers and low Hartmann numbers.Fin surfaces can significantly increase the mixing of fluid inside the enclosure,which can mean reductions in reaction times and operating costs,along with increases in heat transfer and efficiency.
文摘The stability study of the ongoing and recurring Amalpata landslide in Baglung in Nepal’s Gandaki Province is presented in this research. The impacted slope is around 200 meters high, with two terraces that have different slope inclinations. The lower bench, located above the basement, consistently fails and sets others up for failure. The fluctuating water level of the slope, which travels down the slope masses, exacerbates the slide problem. The majority of these rocks are Amalpata landslide area experiences several structural disruptions. The area’s stability must be evaluated in order to prevent and control more harm from occurring to the nearby agricultural land and people living along the slope. The slopes’ failures increase the damages of house existing in nearby area and the erosion of the slope. Two modeling techniques the finite element approach and the limit equilibrium method were used to simulate the slope. The findings show that, in every case, the terrace above the basement is where the majority of the stress is concentrated, with a safety factor of near unity. Using probabilistic slope stability analysis, the failure probability was predicted to be between 98.90% and 100%.