We investigated how density and quality of mesh around interest domain affect electromagnetic (EM) responses of 3D Earth layered media using finite element method (FEM). Effect of different mesh shapes was also in...We investigated how density and quality of mesh around interest domain affect electromagnetic (EM) responses of 3D Earth layered media using finite element method (FEM). Effect of different mesh shapes was also investigated using a method of mixing structured and unstructured mesh. As a case study, we estimated the effects of meshing on selectivity phenomenon of seismic electric signal (SES). Our results suggest that the relative errors resulting from mesh effects may not be negligible, which may lead to some unconvincing explanation of the SES selectivity based on the numerical modeling results.展开更多
A new method for estimating the posterior error of linear triangular element is presented. According to the specified accuracy, the element size and node spacing function of adaptive h-version mesh refinement are pred...A new method for estimating the posterior error of linear triangular element is presented. According to the specified accuracy, the element size and node spacing function of adaptive h-version mesh refinement are predicted. The main domain is divided by the isolines of node spacing into subregions in which mesh regeneration is realized. This remeshing refinement process implements mesh subdivision and mesh de-refinement in onecycle.展开更多
Based on the characteristics of 3D bulk forming process, the arbitrary Lagrangian-Eulerian (ALE) formulation-based FEM is studied, and a prediction-correction ALE-based FEM is proposed which integrates the advantages ...Based on the characteristics of 3D bulk forming process, the arbitrary Lagrangian-Eulerian (ALE) formulation-based FEM is studied, and a prediction-correction ALE-based FEM is proposed which integrates the advantages of precisely predicting the boundary configuration of the deformed material, and of efficiently avoiding hexahedron remeshing processes. The key idea of the prediction-correction ALE FEM is elaborated in detail. Accordingly, the strategy of mesh quality control, one of the key enabling techniques for the 3D bulk forming process numerical simulation by the prediction-correction ALE FEM is carefully investigated, and the algorithm for hexahedral element refinement is formulated based on the mesh distortion energy.展开更多
基金partially supported by the National R & D Special Fund of Public Welfare Industry(No.200808069)National Natural Science Foundation of China(Nos.40974038 and 41025014)the Joint Research Collaboration Program by the Ministry of Science and Technology of China(No.2010DFA21570)
文摘We investigated how density and quality of mesh around interest domain affect electromagnetic (EM) responses of 3D Earth layered media using finite element method (FEM). Effect of different mesh shapes was also investigated using a method of mixing structured and unstructured mesh. As a case study, we estimated the effects of meshing on selectivity phenomenon of seismic electric signal (SES). Our results suggest that the relative errors resulting from mesh effects may not be negligible, which may lead to some unconvincing explanation of the SES selectivity based on the numerical modeling results.
文摘A new method for estimating the posterior error of linear triangular element is presented. According to the specified accuracy, the element size and node spacing function of adaptive h-version mesh refinement are predicted. The main domain is divided by the isolines of node spacing into subregions in which mesh regeneration is realized. This remeshing refinement process implements mesh subdivision and mesh de-refinement in onecycle.
基金the National Natural Science Foundation of China(No.50275094).
文摘Based on the characteristics of 3D bulk forming process, the arbitrary Lagrangian-Eulerian (ALE) formulation-based FEM is studied, and a prediction-correction ALE-based FEM is proposed which integrates the advantages of precisely predicting the boundary configuration of the deformed material, and of efficiently avoiding hexahedron remeshing processes. The key idea of the prediction-correction ALE FEM is elaborated in detail. Accordingly, the strategy of mesh quality control, one of the key enabling techniques for the 3D bulk forming process numerical simulation by the prediction-correction ALE FEM is carefully investigated, and the algorithm for hexahedral element refinement is formulated based on the mesh distortion energy.