Drone logistics is a novel method of distribution that will become prevalent.The advantageous location of the logistics hub enables quicker customer deliveries and lower fuel consumption,resulting in cost savings for ...Drone logistics is a novel method of distribution that will become prevalent.The advantageous location of the logistics hub enables quicker customer deliveries and lower fuel consumption,resulting in cost savings for the company’s transportation operations.Logistics firms must discern the ideal location for establishing a logistics hub,which is challenging due to the simplicity of existing models and the intricate delivery factors.To simulate the drone logistics environment,this study presents a new mathematical model.The model not only retains the aspects of the current models,but also considers the degree of transportation difficulty from the logistics hub to the village,the capacity of drones for transportation,and the distribution of logistics hub locations.Moreover,this paper proposes an improved particle swarm optimization(PSO)algorithm which is a diversity-based hybrid PSO(DHPSO)algorithm to solve this model.In DHPSO,the Gaussian random walk can enhance global search in the model space,while the bubble-net attacking strategy can speed convergence.Besides,Archimedes spiral strategy is employed to overcome the local optima trap in the model and improve the exploitation of the algorithm.DHPSO maintains a balance between exploration and exploitation while better defining the distribution of logistics hub locations Numerical experiments show that the newly proposed model always achieves better locations than the current model.Comparing DHPSO with other state-of-the-art intelligent algorithms,the efficiency of the scheme can be improved by 42.58%.This means that logistics companies can reduce distribution costs and consumers can enjoy a more enjoyable shopping experience by using DHPSO’s location selection.All the results show the location of the drone logistics hub is solved by DHPSO effectively.展开更多
The differential evolution algorithm is an evolutionary algorithm for global optimization and the un-capacitated facility location problem (UFL) is one of the classic NP-Hard problems. In this paper, combined with the...The differential evolution algorithm is an evolutionary algorithm for global optimization and the un-capacitated facility location problem (UFL) is one of the classic NP-Hard problems. In this paper, combined with the specific characteristics of the UFL problem, we introduce the activation function to the algorithm for solving UFL problem and name it improved adaptive differential evolution algorithm (IADEA). Next, to improve the efficiency of the algorithm and to alleviate the problem of being stuck in a local optimum, an adaptive operator was added. To test the improvement of our algorithm, we compare the IADEA with the basic differential evolution algorithm by solving typical instances of UFL problem respectively. Moreover, to compare with other heuristic algorithm, we use the hybrid ant colony algorithm to solve the same instances. The computational results show that IADEA improves the performance of the basic DE and it outperforms the hybrid ant colony algorithm.展开更多
In equipment integrated logistics support(ILS), the supply capability of spare parts is a significant factor. There are lots of depots in the traditional support system, which makes too many redundant spare parts and ...In equipment integrated logistics support(ILS), the supply capability of spare parts is a significant factor. There are lots of depots in the traditional support system, which makes too many redundant spare parts and causes high cost of support. Meanwhile,the inconsistency among depots makes it difficult to manage spare parts. With the development of information technology and transportation, the supply network has become more efficient. In order to further improve the efficiency of supply-support work and the availability of the equipment system, building a system of one centralized depot with multiple depots becomes an appropriate way.In this case, location selection of the depots including centralized depots and multiple depots becomes a top priority in the support system. This paper will focus on the location selection problem of centralized depots considering ILS factors. Unlike the common location selection problem, depots in ILS require a higher service level. Therefore, it becomes desperately necessary to take the high requirement of the mission into account while determining location of depots. Based on this, we raise an optimal depot location model. First, the expected transportation cost is calculated.Next, factors in ILS such as response time, availability and fill rate are analyzed for evaluating positions of open depots. Then, an optimization model of depot location is developed with the minimum expected cost of transportation as objective and ILS factors as constraints. Finally, a numerical case is studied to prove the validity of the model by using the genetic algorithm. Results show that depot location obtained by this model can guarantee the effectiveness and capability of ILS well.展开更多
develop a mentation This paper considers the priority facility primal-dual 3-approximation algorithm for procedure, the authors further improve the location problem with penalties: The authors this problem. Combining...develop a mentation This paper considers the priority facility primal-dual 3-approximation algorithm for procedure, the authors further improve the location problem with penalties: The authors this problem. Combining with the greedy aug- previous ratio 3 to 1.8526.展开更多
A facility system can be modeled by a connected graph in which the vertices represent entities such as suppliers, distribution centers or customers and the edges represent facilities such as the paths of goods or info...A facility system can be modeled by a connected graph in which the vertices represent entities such as suppliers, distribution centers or customers and the edges represent facilities such as the paths of goods or information. The efficiency, and hence the reliability, of a facility system is to a large degree adversely affected by the edge failures in the network. Such failures may be caused by various natural disasters or terrorist attacks. In this paper, we consider facility systems’ reliability analysis based on the classical uncapacitated fixed-charge location problem when subject to edge failures. For an existing facility system, we formulate two models based on deterministic case and stochastic case to measure the loss in efficiency due to edge failures and give computational results and reliability envelopes for a specific example.展开更多
In this paper,a novel location inventory routing(LIR)model is proposed to solve cold chain logistics network problem under uncertain demand environment. The goal of the developed model is to optimize costs of location...In this paper,a novel location inventory routing(LIR)model is proposed to solve cold chain logistics network problem under uncertain demand environment. The goal of the developed model is to optimize costs of location,inventory and transportation.Due to the complex of LIR problem( LIRP), a multi-objective genetic algorithm(GA), non-dominated sorting in genetic algorithm Ⅱ( NSGA-Ⅱ) has been introduced. Its performance is tested over a real case for the proposed problems. Results indicate that NSGA-Ⅱ provides a competitive performance than GA,which demonstrates that the proposed model and multi-objective GA are considerably efficient to solve the problem.展开更多
The reliability of facility location problem has aroused wide concern recently. Many researchers focus on reliable and robust facility systems design under component failures and have obtained promising performance. H...The reliability of facility location problem has aroused wide concern recently. Many researchers focus on reliable and robust facility systems design under component failures and have obtained promising performance. However, the target and reliability of a facility system are to a large degree adversely affected by the edge failures in the network, which remains a deep study. In this paper, we focus on facility systems’ reliability subject to edge failures. For a facility location system, we formulate two models based on classical uncapacitated fixed-charge location problem under deterministic and stochastic cases. For a specific example, location decisions and the comparison of reliability under different location models are given. Extensive experiments verify that significant improvements in reliability can be attained simply by increasing the amount of operating cost.展开更多
This paper is concerned with the asymptotic behavior of the solution με of a p-Ginzburg-Landau system with the radial initial-boundary data. The author proves that the zeros of με in the parabolic domain B1(0) &...This paper is concerned with the asymptotic behavior of the solution με of a p-Ginzburg-Landau system with the radial initial-boundary data. The author proves that the zeros of με in the parabolic domain B1(0) × (0, T] locate near the axial line {0} x (0, T]. In particular, all the zeros converge to this axial line when the parameter ε goes to zero.展开更多
In this work, the Lagrangean Relaxation method has been discussed to solve different sizes of capacitated facility location problem (CFLP). A good lower bound has been achieved on the solution of the CFLP considered i...In this work, the Lagrangean Relaxation method has been discussed to solve different sizes of capacitated facility location problem (CFLP). A good lower bound has been achieved on the solution of the CFLP considered in this paper. This lower bound has been improved by using the Volume algorithm. The methods of setting two important parameters in heuristic have been given. The approaches used to gain the lower bound have been explained. The results of this work have been compared with the known results given by Beasley.展开更多
This paper presents a new class of test procedures for two-sample location problem based on subsample quantiles. The class includes Mann-Whitney test as a special case. The asymptotic normality of the class of tests p...This paper presents a new class of test procedures for two-sample location problem based on subsample quantiles. The class includes Mann-Whitney test as a special case. The asymptotic normality of the class of tests proposed is established. The asymptotic relative performance of the proposed class of test with respect to the optimal member of Xie and Priebe (2000) is studied in terms of Pitman efficiency for various underlying distributions.展开更多
Single Stage Capacitated Warehouse Location Problem (SSCWLP) has been attempted by few researchers in the past. These are Geoffrion and Graves [1], Sharma [2], Sharma [3] and Sharma and Berry [4]. In this paper we giv...Single Stage Capacitated Warehouse Location Problem (SSCWLP) has been attempted by few researchers in the past. These are Geoffrion and Graves [1], Sharma [2], Sharma [3] and Sharma and Berry [4]. In this paper we give a “vertical decomposition” approach to solve SSCWLP that uses Lagrangian relaxation. This way SSCWLP is broken into two versions of capacitated plant location problem (the CPLP_L and CPLP_R) by relaxing the flow balance constraints. For CPLP_R, we use well known Lagrangian relaxations given in literature (Christofides and Beasley [5] and Nauss [6]);and adopt them suitably for solving CPLP_L. We show theoretically in this paper that SSCWLP can be more efficiently solved by techniques of vertical decomposition developed in this paper than the method available in literature (Sharma and Berry [4]). Encouraging computational study is reported in this paper.展开更多
Due to the problem complexity, simultaneous solution methods are limited. A hybrid algorithm is emphatically proposed for LRP. First, the customers are classified by clustering analysis with preference-fitting rules. ...Due to the problem complexity, simultaneous solution methods are limited. A hybrid algorithm is emphatically proposed for LRP. First, the customers are classified by clustering analysis with preference-fitting rules. Second, a chaos search (CS) algorithm for the optimal routes of LRP scheduling is presented in this paper. For the ergodicity and randomness of chaotic sequence, this CS architecture makes it possible to search the solution space easily, thus producing optimal solutions without local optimization. A case study using computer simulation showed that the CS system is simple and effective, which achieves significant improvement compared to a recent LRP with nonlinear constrained optimization solution. Lastly the pratical anlysis is presented relationship with regional logistics and its development in Fujian province.展开更多
We consider a capacitated location-allocation problem in the presence of k connections on the horizontal line barrier. The objective is to locate a set of new facilities among a set of existing facilities and to alloc...We consider a capacitated location-allocation problem in the presence of k connections on the horizontal line barrier. The objective is to locate a set of new facilities among a set of existing facilities and to allocate an optimal number of existing facilities to each new facility in order to satisfy their demands such that the summation of the weighted rectilinear barrier distances from new facilities to existing facilities is minimized. The proposed problem is designed as a mixed-integer nonlinear programming model. To show the efficiency of the model, a numerical example is provided. It is worth noting that the global optimal solution is obtained.展开更多
The location of the distribution facilities and the routing of the vehicles from these facilities are interdependent in many distribution systems. Such a concept recognizes the interdependence;attempts to integrate th...The location of the distribution facilities and the routing of the vehicles from these facilities are interdependent in many distribution systems. Such a concept recognizes the interdependence;attempts to integrate these two decisions have been limited. Multi-objective location-routing problem (MLRP) is combined with the facility location and the vehicle routing decision and satisfied the different objectives. Due to the problem complexity, simultaneous solution methods are limited, which are given in different objectives with conflicts in functions satisfied. Two kinds of optimal mathematical models are proposed for the solution of MLRP. Three methods have been emphatically developed for MLRP. MGA architecture makes it possible to search the solution space efficiently, which provides a path for searching the solution with two-objective LRP. At last the practical proof is given by random analysis for regional distribution with nine cities.展开更多
In this paper a Vertex Covering Obnoxious Facility Location model on a Plane has been designed with a combination of three interacting criteria as follows: 1) Minimize the overall importance of the various exist-ing f...In this paper a Vertex Covering Obnoxious Facility Location model on a Plane has been designed with a combination of three interacting criteria as follows: 1) Minimize the overall importance of the various exist-ing facility points;2) Maximize the minimum distance from the facility to be located to the existing facility points;3) Maximize the number of existing facility points covered. Area restriction concept has been incor-porated so that the facility to be located should be within certain restricted area. The model developed here is a class of maximal covering problem, that is covering maximum number of points where the facility is within the upper bounds of the corresponding mth feasible region Two types of compromise solution methods have been designed to get a satisfactory solution of the multi-objective problem. A transformed non- linear programming algorithm has been designed for the proposed non-linear model. Rectilinear dis-tance norm has been considered as the distance measure as it is more appropriate to various realistic situa-tions. A numerical example has been presented to illustrate the solution algorithm.展开更多
Multi-project multi-site location problems are multi-objective combinational optimization ones with discrete variables which are hard to solve. To do so, the case of particle swarm optimization is considered due to it...Multi-project multi-site location problems are multi-objective combinational optimization ones with discrete variables which are hard to solve. To do so, the case of particle swarm optimization is considered due to its useful char- acteristics such as easy implantation, simple parameter settings and fast convergence. First these problems are trans- formed into ones with continuous variables by defining an equivalent probability matrix in this paper, then multi-objective particle swarm optimization based on the minimal particle angle is used to solve them. Methods such as continuation of discrete variables, update of particles for matrix variables, normalization of particle position and evalua- tion of particle fitness are presented. Finally the efficiency of the proposed method is validated by comparing it with other methods on an eight-project-ten-site location problem.展开更多
基金supported by the NationalNatural Science Foundation of China(No.61866023).
文摘Drone logistics is a novel method of distribution that will become prevalent.The advantageous location of the logistics hub enables quicker customer deliveries and lower fuel consumption,resulting in cost savings for the company’s transportation operations.Logistics firms must discern the ideal location for establishing a logistics hub,which is challenging due to the simplicity of existing models and the intricate delivery factors.To simulate the drone logistics environment,this study presents a new mathematical model.The model not only retains the aspects of the current models,but also considers the degree of transportation difficulty from the logistics hub to the village,the capacity of drones for transportation,and the distribution of logistics hub locations.Moreover,this paper proposes an improved particle swarm optimization(PSO)algorithm which is a diversity-based hybrid PSO(DHPSO)algorithm to solve this model.In DHPSO,the Gaussian random walk can enhance global search in the model space,while the bubble-net attacking strategy can speed convergence.Besides,Archimedes spiral strategy is employed to overcome the local optima trap in the model and improve the exploitation of the algorithm.DHPSO maintains a balance between exploration and exploitation while better defining the distribution of logistics hub locations Numerical experiments show that the newly proposed model always achieves better locations than the current model.Comparing DHPSO with other state-of-the-art intelligent algorithms,the efficiency of the scheme can be improved by 42.58%.This means that logistics companies can reduce distribution costs and consumers can enjoy a more enjoyable shopping experience by using DHPSO’s location selection.All the results show the location of the drone logistics hub is solved by DHPSO effectively.
文摘The differential evolution algorithm is an evolutionary algorithm for global optimization and the un-capacitated facility location problem (UFL) is one of the classic NP-Hard problems. In this paper, combined with the specific characteristics of the UFL problem, we introduce the activation function to the algorithm for solving UFL problem and name it improved adaptive differential evolution algorithm (IADEA). Next, to improve the efficiency of the algorithm and to alleviate the problem of being stuck in a local optimum, an adaptive operator was added. To test the improvement of our algorithm, we compare the IADEA with the basic differential evolution algorithm by solving typical instances of UFL problem respectively. Moreover, to compare with other heuristic algorithm, we use the hybrid ant colony algorithm to solve the same instances. The computational results show that IADEA improves the performance of the basic DE and it outperforms the hybrid ant colony algorithm.
基金supported by the Science Challenge Project(TZ2018007)the National Natural Science Foundation of China(71671009+2 种基金 61871013 61573041 61573043)
文摘In equipment integrated logistics support(ILS), the supply capability of spare parts is a significant factor. There are lots of depots in the traditional support system, which makes too many redundant spare parts and causes high cost of support. Meanwhile,the inconsistency among depots makes it difficult to manage spare parts. With the development of information technology and transportation, the supply network has become more efficient. In order to further improve the efficiency of supply-support work and the availability of the equipment system, building a system of one centralized depot with multiple depots becomes an appropriate way.In this case, location selection of the depots including centralized depots and multiple depots becomes a top priority in the support system. This paper will focus on the location selection problem of centralized depots considering ILS factors. Unlike the common location selection problem, depots in ILS require a higher service level. Therefore, it becomes desperately necessary to take the high requirement of the mission into account while determining location of depots. Based on this, we raise an optimal depot location model. First, the expected transportation cost is calculated.Next, factors in ILS such as response time, availability and fill rate are analyzed for evaluating positions of open depots. Then, an optimization model of depot location is developed with the minimum expected cost of transportation as objective and ILS factors as constraints. Finally, a numerical case is studied to prove the validity of the model by using the genetic algorithm. Results show that depot location obtained by this model can guarantee the effectiveness and capability of ILS well.
基金supported by the National Natural Science Foundation of China under Grant No.11371001
文摘develop a mentation This paper considers the priority facility primal-dual 3-approximation algorithm for procedure, the authors further improve the location problem with penalties: The authors this problem. Combining with the greedy aug- previous ratio 3 to 1.8526.
文摘A facility system can be modeled by a connected graph in which the vertices represent entities such as suppliers, distribution centers or customers and the edges represent facilities such as the paths of goods or information. The efficiency, and hence the reliability, of a facility system is to a large degree adversely affected by the edge failures in the network. Such failures may be caused by various natural disasters or terrorist attacks. In this paper, we consider facility systems’ reliability analysis based on the classical uncapacitated fixed-charge location problem when subject to edge failures. For an existing facility system, we formulate two models based on deterministic case and stochastic case to measure the loss in efficiency due to edge failures and give computational results and reliability envelopes for a specific example.
基金Natural Science Foundation of Shanghai,China(No.15ZR1401600)the Fundamental Research Funds for the Central Universities,China(No.CUSF-DH-D-2015096)
文摘In this paper,a novel location inventory routing(LIR)model is proposed to solve cold chain logistics network problem under uncertain demand environment. The goal of the developed model is to optimize costs of location,inventory and transportation.Due to the complex of LIR problem( LIRP), a multi-objective genetic algorithm(GA), non-dominated sorting in genetic algorithm Ⅱ( NSGA-Ⅱ) has been introduced. Its performance is tested over a real case for the proposed problems. Results indicate that NSGA-Ⅱ provides a competitive performance than GA,which demonstrates that the proposed model and multi-objective GA are considerably efficient to solve the problem.
文摘The reliability of facility location problem has aroused wide concern recently. Many researchers focus on reliable and robust facility systems design under component failures and have obtained promising performance. However, the target and reliability of a facility system are to a large degree adversely affected by the edge failures in the network, which remains a deep study. In this paper, we focus on facility systems’ reliability subject to edge failures. For a facility location system, we formulate two models based on classical uncapacitated fixed-charge location problem under deterministic and stochastic cases. For a specific example, location decisions and the comparison of reliability under different location models are given. Extensive experiments verify that significant improvements in reliability can be attained simply by increasing the amount of operating cost.
基金The NSF(11471164)of ChinaKey Science Research Project(KJ2018A0947)of Anhui Provincial Universities and Colleges
文摘This paper is concerned with the asymptotic behavior of the solution με of a p-Ginzburg-Landau system with the radial initial-boundary data. The author proves that the zeros of με in the parabolic domain B1(0) × (0, T] locate near the axial line {0} x (0, T]. In particular, all the zeros converge to this axial line when the parameter ε goes to zero.
文摘In this work, the Lagrangean Relaxation method has been discussed to solve different sizes of capacitated facility location problem (CFLP). A good lower bound has been achieved on the solution of the CFLP considered in this paper. This lower bound has been improved by using the Volume algorithm. The methods of setting two important parameters in heuristic have been given. The approaches used to gain the lower bound have been explained. The results of this work have been compared with the known results given by Beasley.
文摘This paper presents a new class of test procedures for two-sample location problem based on subsample quantiles. The class includes Mann-Whitney test as a special case. The asymptotic normality of the class of tests proposed is established. The asymptotic relative performance of the proposed class of test with respect to the optimal member of Xie and Priebe (2000) is studied in terms of Pitman efficiency for various underlying distributions.
文摘Single Stage Capacitated Warehouse Location Problem (SSCWLP) has been attempted by few researchers in the past. These are Geoffrion and Graves [1], Sharma [2], Sharma [3] and Sharma and Berry [4]. In this paper we give a “vertical decomposition” approach to solve SSCWLP that uses Lagrangian relaxation. This way SSCWLP is broken into two versions of capacitated plant location problem (the CPLP_L and CPLP_R) by relaxing the flow balance constraints. For CPLP_R, we use well known Lagrangian relaxations given in literature (Christofides and Beasley [5] and Nauss [6]);and adopt them suitably for solving CPLP_L. We show theoretically in this paper that SSCWLP can be more efficiently solved by techniques of vertical decomposition developed in this paper than the method available in literature (Sharma and Berry [4]). Encouraging computational study is reported in this paper.
文摘Due to the problem complexity, simultaneous solution methods are limited. A hybrid algorithm is emphatically proposed for LRP. First, the customers are classified by clustering analysis with preference-fitting rules. Second, a chaos search (CS) algorithm for the optimal routes of LRP scheduling is presented in this paper. For the ergodicity and randomness of chaotic sequence, this CS architecture makes it possible to search the solution space easily, thus producing optimal solutions without local optimization. A case study using computer simulation showed that the CS system is simple and effective, which achieves significant improvement compared to a recent LRP with nonlinear constrained optimization solution. Lastly the pratical anlysis is presented relationship with regional logistics and its development in Fujian province.
文摘We consider a capacitated location-allocation problem in the presence of k connections on the horizontal line barrier. The objective is to locate a set of new facilities among a set of existing facilities and to allocate an optimal number of existing facilities to each new facility in order to satisfy their demands such that the summation of the weighted rectilinear barrier distances from new facilities to existing facilities is minimized. The proposed problem is designed as a mixed-integer nonlinear programming model. To show the efficiency of the model, a numerical example is provided. It is worth noting that the global optimal solution is obtained.
文摘The location of the distribution facilities and the routing of the vehicles from these facilities are interdependent in many distribution systems. Such a concept recognizes the interdependence;attempts to integrate these two decisions have been limited. Multi-objective location-routing problem (MLRP) is combined with the facility location and the vehicle routing decision and satisfied the different objectives. Due to the problem complexity, simultaneous solution methods are limited, which are given in different objectives with conflicts in functions satisfied. Two kinds of optimal mathematical models are proposed for the solution of MLRP. Three methods have been emphatically developed for MLRP. MGA architecture makes it possible to search the solution space efficiently, which provides a path for searching the solution with two-objective LRP. At last the practical proof is given by random analysis for regional distribution with nine cities.
文摘In this paper a Vertex Covering Obnoxious Facility Location model on a Plane has been designed with a combination of three interacting criteria as follows: 1) Minimize the overall importance of the various exist-ing facility points;2) Maximize the minimum distance from the facility to be located to the existing facility points;3) Maximize the number of existing facility points covered. Area restriction concept has been incor-porated so that the facility to be located should be within certain restricted area. The model developed here is a class of maximal covering problem, that is covering maximum number of points where the facility is within the upper bounds of the corresponding mth feasible region Two types of compromise solution methods have been designed to get a satisfactory solution of the multi-objective problem. A transformed non- linear programming algorithm has been designed for the proposed non-linear model. Rectilinear dis-tance norm has been considered as the distance measure as it is more appropriate to various realistic situa-tions. A numerical example has been presented to illustrate the solution algorithm.
基金Project 60304016 supported by the Nationa Natural Science Foundation of China
文摘Multi-project multi-site location problems are multi-objective combinational optimization ones with discrete variables which are hard to solve. To do so, the case of particle swarm optimization is considered due to its useful char- acteristics such as easy implantation, simple parameter settings and fast convergence. First these problems are trans- formed into ones with continuous variables by defining an equivalent probability matrix in this paper, then multi-objective particle swarm optimization based on the minimal particle angle is used to solve them. Methods such as continuation of discrete variables, update of particles for matrix variables, normalization of particle position and evalua- tion of particle fitness are presented. Finally the efficiency of the proposed method is validated by comparing it with other methods on an eight-project-ten-site location problem.