In the quasi-free electron model,the Fermi surface spreads into a sphere in the Brillouin zone,i.e.,the Fermi sphere.The Fermi sphere exists widely in metal systems,no matter whether the crystal is in a body-center cu...In the quasi-free electron model,the Fermi surface spreads into a sphere in the Brillouin zone,i.e.,the Fermi sphere.The Fermi sphere exists widely in metal systems,no matter whether the crystal is in a body-center cubic,face-center cubic,or hexagonal close-packed lattice.Here,we report a class of compounds stabilized at high pressure with Rubik’s cubic Fermi surface.展开更多
We construct a three-dimensional topological superconductor Bogoliubov–de Gennes(BdG)Hamiltonian with the normal state being a three-dimensional topological insulator.By introducing inter-orbital spin-triplet pairing...We construct a three-dimensional topological superconductor Bogoliubov–de Gennes(BdG)Hamiltonian with the normal state being a three-dimensional topological insulator.By introducing inter-orbital spin-triplet pairings term△3,there are topological Majorana nodes in the bulk and they are connected by Majorana Fermi arcs on the surface,similar to the case of Weyl semimetal.Furthermore,by adding an inversion-breaking term to the normal state,momentum-independent pairing terms with different parities can coexist in the Bd G Hamiltonian,which creates more Majorana modes similar to Andreev bound states and a richer phase diagram.展开更多
We report on the optimal production of the Bose and Fermi mixtures with ^(87) Rb and ^(40)K in a crossed optical dipole trap(ODT).We measure the atomic number and lifetime of the mixtures in combination of the spin st...We report on the optimal production of the Bose and Fermi mixtures with ^(87) Rb and ^(40)K in a crossed optical dipole trap(ODT).We measure the atomic number and lifetime of the mixtures in combination of the spin state |F=9/2,m_(F)=9/2> of^(40)K and |1,1>of ^(87) Rb in the ODT,which is larger and longer compared with the combination of the spin state |9/2,9/2> of^(40)K and 12,2) of ^(87)Rb in the ODT.We observe the atomic numbers of ^(87)Rb and ^(40)K shown in each stage of the sympathetic cooling process while gradually reducing the depth of the optical trap.By optimizing the relative loading time of atomic mixtures in the MOT,we obtain the large atomic number of ^(40)K(~6 ×10^(6)) or the mixtures of atoms with an equal number(~1.6 × 10^(6)) at the end of evaporative cooling in the ODT.We experimentally investigate the evaporative cooling in an enlarged volume of the ODT via adding a third laser beam to the crossed ODT and found that more atoms(8 × 10^(6)) and higher degeneracy(T/T_(F)=0.25) of Fermi gases are obtained.The ultracold atomic gas mixtures pave the way to explore phenomena such as few-body collisions and the Bose-Fermi Hubbard model,as well as for creating ground-state molecules of ^(87)Rb^(40)K.展开更多
A new approach that using polarized photon–gluon collisions reported by STAR Collaboration is used to do tomography of the ultrarelativistic nucleus.The collision can be treated as a double-slit experiment at Fermi s...A new approach that using polarized photon–gluon collisions reported by STAR Collaboration is used to do tomography of the ultrarelativistic nucleus.The collision can be treated as a double-slit experiment at Fermi scale and solves a mystery last over 20 years in extracting the nuclear radius via vector meson photoproduction.展开更多
The spatial distribution of vortex bound states is often anisotropic,which is correlated with the underlying property of materials.In this work,we examine the effects of Fermi surface anisotropy on vortex bound states...The spatial distribution of vortex bound states is often anisotropic,which is correlated with the underlying property of materials.In this work,we examine the effects of Fermi surface anisotropy on vortex bound states.The large-scale calculation of vortex bound states is introduced in the presence of fourfold or twofold Fermi surface by solving the Bogoliubov–de Gennes(BdG)equations.Two kinds of quasiparticles’behaviors can be extracted from the local density of states(LDOS)around a vortex.The angle-dependent quasiparticles will move from high energy to low energy when the angle varies from curvature maxima to minima of the Fermi surface,while the angle-independent quasiparticles tend to stay at a relatively higher energy.In addition,the weight of angle-dependent quasiparticles can be enhanced by the increasing anisotropy degree of Fermi surface.展开更多
A theoretical study on discrete vortex bound states is carried out near a vortex core in the presence of a van Hove singularity(VHS) near the Fermi level by solving Bogoliubov–de Gennes(Bd G) equations. When the VHS ...A theoretical study on discrete vortex bound states is carried out near a vortex core in the presence of a van Hove singularity(VHS) near the Fermi level by solving Bogoliubov–de Gennes(Bd G) equations. When the VHS lies exactly at the Fermi level and also at the middle of the band, a zero-energy state and other higher-energy states whose energy ratios follow integer numbers emerge. These discrete vortex bound state peaks undergo a splitting behavior when the VHS or Fermi level moves away from the middle of the band. Such splitting behavior will eventually lead to a new arrangement of quantized vortex core states whose energy ratios follow half-odd-integer numbers.展开更多
In this paper, we give a definition of the Fermi function, or the so-called Woods-Saxon potential, a well-known potential in nuclear physics;then, we give a few of its applications as examples. Some important integral...In this paper, we give a definition of the Fermi function, or the so-called Woods-Saxon potential, a well-known potential in nuclear physics;then, we give a few of its applications as examples. Some important integrals, which involve this function, are computed discussing the integrability and convergence of these integrals. Following, we derive formulae that encounter the above-mentioned function to get nuclear and generalized moments;the radial Fourier transformation is also exposed. Some related applications are then given that use such important integrals;in particular, we give the computation in conjunction with the problem of getting the optical-model potential for heavy-ion interactions at intermediate energies. Finally, we conclude with important remarks to do with the evolution of the subject.展开更多
In a Dirac semimetal, the massless Dirac fermion has zero chirality, leading to surface states connected adiabatically to a topologically trivial surface state as well as vanishing anomalous Hall effect. Recently, it ...In a Dirac semimetal, the massless Dirac fermion has zero chirality, leading to surface states connected adiabatically to a topologically trivial surface state as well as vanishing anomalous Hall effect. Recently, it is predicted that in the nonrelativistic limit of certain collinear antiferromagnets, there exists a type of chiral“Dirac-like” fermion, whose dispersion manifests four-fold degenerate crossing points formed by spin-degenerate linear bands, with topologically protected Fermi arcs. Such an unconventional chiral fermion, protected by a hidden SU(2) symmetry in the hierarchy of an enhanced crystallographic group, namely spin space group, is not experimentally verified yet. Here, by angle-resolved photoemission spectroscopy measurements, we reveal the surface origin of the electron pocket at the Fermi surface in collinear antiferromagnet CoNb3S6. Combining with neutron diffraction and first-principles calculations, we suggest a multidomain collinear antiferromagnetic configuration, rendering the the existence of the Fermi-arc surface states induced by chiral Dirac-like fermions.Our work provides spectral evidence of the chiral Dirac-like fermion caused by particular spin symmetry in CoNb_(3)S_(6), paving an avenue for exploring new emergent phenomena in antiferromagnets with unconventional quasiparticle excitations.展开更多
Three-dimensional(3D)degenerate Fermi gases in the presence of spin-orbit coupling,inducing various kinds of physical findings and phenomena,have attracted tremendous attention in these years.We investigate the 3D spi...Three-dimensional(3D)degenerate Fermi gases in the presence of spin-orbit coupling,inducing various kinds of physical findings and phenomena,have attracted tremendous attention in these years.We investigate the 3D spin-orbit coupled degenerate Fermi gases in theory and first present the analytic expression of their ground state.Our study provides an innovative perspective into understanding of the topological properties of 3D unconventional superconductors,and describes the topological phase transitions in trivial and topological phase areas.Further,such a system is provided with a richer set of Cooper pairings than traditional superconductors.The dual Cooper pairs with same spin directions emerge and exhibit peculiar behaviors,leading to topological phase transitions.Our study and discussion can be generalized to some other types of unconventional superconductors and areas of optical lattices.展开更多
One hallmark of Weyl semimetals is the emergence of Fermi arcs(FAs) in surface Brillouin zones, where FAs connect the projected Weyl nodes of opposite chiralities. Unclosed FAs can give rise to various exotic effects ...One hallmark of Weyl semimetals is the emergence of Fermi arcs(FAs) in surface Brillouin zones, where FAs connect the projected Weyl nodes of opposite chiralities. Unclosed FAs can give rise to various exotic effects that have attracted tremendous research interest. Configurations of FAs are usually thought to be determined fully by the band topology of the bulk states, which seems impossible to manipulate. Here, we show that FAs can be simply modified by a surface gate voltage. Because the penetration length of the surface states depends on the in-plane momentum, a surface gate voltage induces an effective energy dispersion. As a result, a continuous deformation of the surface band can be implemented by tuning the surface gate voltage. In particular, as the saddle point of the surface band meets the Fermi energy, the topological Lifshitz transition takes place for the FAs,during which the Weyl nodes switch their partners connected by the FAs. Accordingly, the magnetic Weyl orbits composed of the FAs on opposite surfaces and chiral Landau bands inside the bulk change their configurations.We show that such an effect can be probed by the transport measurements in a magnetic field, in which the switch-on and switch-off conductances by the surface gate voltage signal the Lifshitz transition. Our work opens a new route for manipulating the FAs by surface gates and exploring novel transport phenomena associated with the topological Lifshitz transition.展开更多
With an external in-plane magnetic field, we show the emergence of a topological nodal superconducting phase of the two-dimensional topological surface states. This nodal superconducting phase is protected by the chir...With an external in-plane magnetic field, we show the emergence of a topological nodal superconducting phase of the two-dimensional topological surface states. This nodal superconducting phase is protected by the chiral symmetry with a non-zero magnetic field, and there are corresponding Majorana Fermi arcs(also known as flat band Andreev bound states) connecting the two Majorana nodes along the edges, similar to the case of Weyl semimetal. The topological nodal superconductor is an intermediate phase between two different chiral superconductors, and is stable against the effects of substrates. The two-dimensional effective theory of the nodal superconducting phase also captures the low energy behavior of a three-dimensional lattice model which describes the iron-based superconductor with a thin film geometry. The localizations of the Majorana nodes can be manipulated through external in-plane magnetic fields, which may introduce a non-trivial topological Berry phase between them.展开更多
We report a compact experimental setup for producing a quantum degenerate mixture of Bose23Na and Fermi40K gases. The atoms are collected in dual dark magneto–optical traps(MOT) with species timesharing loading to re...We report a compact experimental setup for producing a quantum degenerate mixture of Bose23Na and Fermi40K gases. The atoms are collected in dual dark magneto–optical traps(MOT) with species timesharing loading to reduce the light-induced loss, and then further cooled using the gray molasses technique on the D2line for23Na and D1line for40K. The microwave evaporation cooling is used to cool23Na in |F = 2, mF= 2〉 in an optically plugged magnetic trap, meanwhile,40K in |F = 9/2, mF= 9/2〉 is sympathetically cooled. Then the mixture is loaded into a large volume optical dipole trap where23Na atoms are immediately transferred to |1, 1〉 for further effective cooling to avoid the strong three-body loss between23Na atoms in |2, 2〉 and40K atoms in |9/2, 9/2〉. At the end of the evaporation in optical trap, a degenerate Fermi gas of40K with 1.9 × 10^(5) atoms at T/TF= 0.5 in the |9/2, 9/2〉 hyperfine state coexists with a Bose–Einstein condensate(BEC) of23Na with 8 × 10^(4) atoms in the |1, 1〉 hyperfine state at 300 n K. We also can produce the two species mixture with the tunable population imbalance by adjusting the 23Na magneto–optical trap loading time.展开更多
We investigate the topological phase marked by the Thouless–Kohmoto–Nightingale–Nijs(TKNN) number and the phase transitions driven by the next nearest neighbor(NNN) hopping in noncentrosymmetric cold Fermi gase...We investigate the topological phase marked by the Thouless–Kohmoto–Nightingale–Nijs(TKNN) number and the phase transitions driven by the next nearest neighbor(NNN) hopping in noncentrosymmetric cold Fermi gases, both spinsinglet pairing and spin-triplet pairing are considered. There exists a critical t'c for the NNN hopping, at which the quantum phase transition occurs, and the system changes from an Abelian(non-Abelian) phase to a non-Abelian(Abelian) one. By numerically diagonalizing the Hamiltonian in the real space, the energy spectra with edge states for different topological phases and the Majorana zero modes are discussed. Although the spin-triplet pairing does not contribute to the gap closing and the phase diagram, it induces gapless states in the presence of a magnetic field, and the TKNN number in this region is still zero.展开更多
We demonstrate that dual dark magnetic-optical-traps(MOTs)have great importance in the two-species^(87)Rb and^(40)K mixture compared with dual bright MOTs.The dark MOT has a little improvement in the trapping of singl...We demonstrate that dual dark magnetic-optical-traps(MOTs)have great importance in the two-species^(87)Rb and^(40)K mixture compared with dual bright MOTs.The dark MOT has a little improvement in the trapping of single-species^(87)Rb or^(40)K gases compared with bright MOT.For the case of loading two-species^(87)Rb and^(40)K simultaneously,the improvement of^(40)K in the dual dark MOTs is mainly from the reduction of light-assisted collision losses.The dual dark MOTs employ a pair of conical lenses to produce the hollow beam for repump laser with high efficiency.The number and density of^(87)Rb and^(40)K atoms after evaporative cooling in the hybrid magnetic trap with dark MOT loading are compared with those in bright MOT.The atoms with large number and high density make it easier to realize the quantum degenerate of Bose-Fermi mixture.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.010-63243095)the National Science Foundation of China(Grant Nos.92263101 and 12174200)。
文摘In the quasi-free electron model,the Fermi surface spreads into a sphere in the Brillouin zone,i.e.,the Fermi sphere.The Fermi sphere exists widely in metal systems,no matter whether the crystal is in a body-center cubic,face-center cubic,or hexagonal close-packed lattice.Here,we report a class of compounds stabilized at high pressure with Rubik’s cubic Fermi surface.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12174067 and 11804223)。
文摘We construct a three-dimensional topological superconductor Bogoliubov–de Gennes(BdG)Hamiltonian with the normal state being a three-dimensional topological insulator.By introducing inter-orbital spin-triplet pairings term△3,there are topological Majorana nodes in the bulk and they are connected by Majorana Fermi arcs on the surface,similar to the case of Weyl semimetal.Furthermore,by adding an inversion-breaking term to the normal state,momentum-independent pairing terms with different parities can coexist in the Bd G Hamiltonian,which creates more Majorana modes similar to Andreev bound states and a richer phase diagram.
基金supported by the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302003)the National Natural Science Foundation of China (Grant Nos. 12034011, U23A6004, 12374245,12322409, 92065108, 11974224, and 12022406)+1 种基金the National Key Research and Development Program of China (Grant Nos. 2022YFA1404101 and 2021YFA1401700)the Fund for Shanxi 1331 Project Key Subjects Construction。
文摘We report on the optimal production of the Bose and Fermi mixtures with ^(87) Rb and ^(40)K in a crossed optical dipole trap(ODT).We measure the atomic number and lifetime of the mixtures in combination of the spin state |F=9/2,m_(F)=9/2> of^(40)K and |1,1>of ^(87) Rb in the ODT,which is larger and longer compared with the combination of the spin state |9/2,9/2> of^(40)K and 12,2) of ^(87)Rb in the ODT.We observe the atomic numbers of ^(87)Rb and ^(40)K shown in each stage of the sympathetic cooling process while gradually reducing the depth of the optical trap.By optimizing the relative loading time of atomic mixtures in the MOT,we obtain the large atomic number of ^(40)K(~6 ×10^(6)) or the mixtures of atoms with an equal number(~1.6 × 10^(6)) at the end of evaporative cooling in the ODT.We experimentally investigate the evaporative cooling in an enlarged volume of the ODT via adding a third laser beam to the crossed ODT and found that more atoms(8 × 10^(6)) and higher degeneracy(T/T_(F)=0.25) of Fermi gases are obtained.The ultracold atomic gas mixtures pave the way to explore phenomena such as few-body collisions and the Bose-Fermi Hubbard model,as well as for creating ground-state molecules of ^(87)Rb^(40)K.
文摘A new approach that using polarized photon–gluon collisions reported by STAR Collaboration is used to do tomography of the ultrarelativistic nucleus.The collision can be treated as a double-slit experiment at Fermi scale and solves a mystery last over 20 years in extracting the nuclear radius via vector meson photoproduction.
基金the National Natural Science Foundation of China(Grant No.11804154)Scientific Research Foundation of NJIT(Grant No.YKJ201853).
文摘The spatial distribution of vortex bound states is often anisotropic,which is correlated with the underlying property of materials.In this work,we examine the effects of Fermi surface anisotropy on vortex bound states.The large-scale calculation of vortex bound states is introduced in the presence of fourfold or twofold Fermi surface by solving the Bogoliubov–de Gennes(BdG)equations.Two kinds of quasiparticles’behaviors can be extracted from the local density of states(LDOS)around a vortex.The angle-dependent quasiparticles will move from high energy to low energy when the angle varies from curvature maxima to minima of the Fermi surface,while the angle-independent quasiparticles tend to stay at a relatively higher energy.In addition,the weight of angle-dependent quasiparticles can be enhanced by the increasing anisotropy degree of Fermi surface.
基金the National Natural Science Foundation of China (Grant No. 11804154)the Scientific Research Foundation of NJIT (Grant Nos. YKJ201853 and CKJA201807)。
文摘A theoretical study on discrete vortex bound states is carried out near a vortex core in the presence of a van Hove singularity(VHS) near the Fermi level by solving Bogoliubov–de Gennes(Bd G) equations. When the VHS lies exactly at the Fermi level and also at the middle of the band, a zero-energy state and other higher-energy states whose energy ratios follow integer numbers emerge. These discrete vortex bound state peaks undergo a splitting behavior when the VHS or Fermi level moves away from the middle of the band. Such splitting behavior will eventually lead to a new arrangement of quantized vortex core states whose energy ratios follow half-odd-integer numbers.
文摘In this paper, we give a definition of the Fermi function, or the so-called Woods-Saxon potential, a well-known potential in nuclear physics;then, we give a few of its applications as examples. Some important integrals, which involve this function, are computed discussing the integrability and convergence of these integrals. Following, we derive formulae that encounter the above-mentioned function to get nuclear and generalized moments;the radial Fourier transformation is also exposed. Some related applications are then given that use such important integrals;in particular, we give the computation in conjunction with the problem of getting the optical-model potential for heavy-ion interactions at intermediate energies. Finally, we conclude with important remarks to do with the evolution of the subject.
基金supported by the National Key R&D Program of China (Grant Nos. 2020YFA0308900 and 2022YFA1403700)the National Natural Science Foundation of China (Grant Nos. 12074163, 12134020, 11974157, 12104255, 12004159, and 12374146)+8 种基金Guangdong Provincial Key Laboratory for Computational Science and Material Design (Grant No. 2019B030301001)the Science, Technology and Innovation Commission of Shenzhen Municipality (Grant Nos. ZDSYS20190902092905285 and KQTD20190929173815000)Guangdong Basic and Applied Basic Research Foundation (Grant Nos. 2022B1515020046, 2021B1515130007, 2022A1515011915, 2019A1515110712, and 2022B1515130005)Shenzhen Science and Technology Program (Grant Nos. RCJC20221008092722009 and RCBS20210706092218039)the Guangdong Innovative and Entrepreneurial Research Team Program (Grant No. 2019ZT08C044)the beam time awarded by Australia’s Nuclear Science and Technology Organisation (ANSTO) (Grant No. P8130)the Materials and Life Science Experimental Facility of the Japan Proton Accelerator Research Complex (J-PARC) was performed under a user program (Proposal No. 2019B0140)performed at the Hiroshima Synchrotron Radiation Center (HiSOR) of Japan (Grant Nos. 22BG023 and 22BG029)Shanghai Synchrotron Radiation Facility (SSRF) BL03U (Grant No. 2022-SSRF-PT-020848)。
文摘In a Dirac semimetal, the massless Dirac fermion has zero chirality, leading to surface states connected adiabatically to a topologically trivial surface state as well as vanishing anomalous Hall effect. Recently, it is predicted that in the nonrelativistic limit of certain collinear antiferromagnets, there exists a type of chiral“Dirac-like” fermion, whose dispersion manifests four-fold degenerate crossing points formed by spin-degenerate linear bands, with topologically protected Fermi arcs. Such an unconventional chiral fermion, protected by a hidden SU(2) symmetry in the hierarchy of an enhanced crystallographic group, namely spin space group, is not experimentally verified yet. Here, by angle-resolved photoemission spectroscopy measurements, we reveal the surface origin of the electron pocket at the Fermi surface in collinear antiferromagnet CoNb3S6. Combining with neutron diffraction and first-principles calculations, we suggest a multidomain collinear antiferromagnetic configuration, rendering the the existence of the Fermi-arc surface states induced by chiral Dirac-like fermions.Our work provides spectral evidence of the chiral Dirac-like fermion caused by particular spin symmetry in CoNb_(3)S_(6), paving an avenue for exploring new emergent phenomena in antiferromagnets with unconventional quasiparticle excitations.
基金supported by the National Natural Science Foundation of China(Grant Nos.61805162,11774328,and 12274005)the National Key Research and Development Program of China(Grant No.2021YFA1401900)。
文摘Three-dimensional(3D)degenerate Fermi gases in the presence of spin-orbit coupling,inducing various kinds of physical findings and phenomena,have attracted tremendous attention in these years.We investigate the 3D spin-orbit coupled degenerate Fermi gases in theory and first present the analytic expression of their ground state.Our study provides an innovative perspective into understanding of the topological properties of 3D unconventional superconductors,and describes the topological phase transitions in trivial and topological phase areas.Further,such a system is provided with a richer set of Cooper pairings than traditional superconductors.The dual Cooper pairs with same spin directions emerge and exhibit peculiar behaviors,leading to topological phase transitions.Our study and discussion can be generalized to some other types of unconventional superconductors and areas of optical lattices.
基金supported by the National Natural Science Foundation of China (Grant Nos. 12074172, 12222406, and 12174182)the State Key Program for Basic Researches of China (Grant No. 2021YFA1400403)+1 种基金the Fundamental Research Funds for the Central Universities, the startup grant at Nanjing Universitythe Excellent Programme at Nanjing University。
文摘One hallmark of Weyl semimetals is the emergence of Fermi arcs(FAs) in surface Brillouin zones, where FAs connect the projected Weyl nodes of opposite chiralities. Unclosed FAs can give rise to various exotic effects that have attracted tremendous research interest. Configurations of FAs are usually thought to be determined fully by the band topology of the bulk states, which seems impossible to manipulate. Here, we show that FAs can be simply modified by a surface gate voltage. Because the penetration length of the surface states depends on the in-plane momentum, a surface gate voltage induces an effective energy dispersion. As a result, a continuous deformation of the surface band can be implemented by tuning the surface gate voltage. In particular, as the saddle point of the surface band meets the Fermi energy, the topological Lifshitz transition takes place for the FAs,during which the Weyl nodes switch their partners connected by the FAs. Accordingly, the magnetic Weyl orbits composed of the FAs on opposite surfaces and chiral Landau bands inside the bulk change their configurations.We show that such an effect can be probed by the transport measurements in a magnetic field, in which the switch-on and switch-off conductances by the surface gate voltage signal the Lifshitz transition. Our work opens a new route for manipulating the FAs by surface gates and exploring novel transport phenomena associated with the topological Lifshitz transition.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11804223 (MLL, YW, HZZ, HLC, TYC, XL), 11474061 (XL), and 12174067 (XL))。
文摘With an external in-plane magnetic field, we show the emergence of a topological nodal superconducting phase of the two-dimensional topological surface states. This nodal superconducting phase is protected by the chiral symmetry with a non-zero magnetic field, and there are corresponding Majorana Fermi arcs(also known as flat band Andreev bound states) connecting the two Majorana nodes along the edges, similar to the case of Weyl semimetal. The topological nodal superconductor is an intermediate phase between two different chiral superconductors, and is stable against the effects of substrates. The two-dimensional effective theory of the nodal superconducting phase also captures the low energy behavior of a three-dimensional lattice model which describes the iron-based superconductor with a thin film geometry. The localizations of the Majorana nodes can be manipulated through external in-plane magnetic fields, which may introduce a non-trivial topological Berry phase between them.
基金supported by the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302003)the National Key Research and Development Program of China (Grant Nos. 2022YFA1404101, 2018YFA0307601,and 2021YFA1401700)+1 种基金the National Natural Science Foundation of China (Grant Nos. 12034011, 92065108, 11974224, 12022406, and 12004229)the Fund for Shanxi 1331 Project Key Subjects Construction。
文摘We report a compact experimental setup for producing a quantum degenerate mixture of Bose23Na and Fermi40K gases. The atoms are collected in dual dark magneto–optical traps(MOT) with species timesharing loading to reduce the light-induced loss, and then further cooled using the gray molasses technique on the D2line for23Na and D1line for40K. The microwave evaporation cooling is used to cool23Na in |F = 2, mF= 2〉 in an optically plugged magnetic trap, meanwhile,40K in |F = 9/2, mF= 9/2〉 is sympathetically cooled. Then the mixture is loaded into a large volume optical dipole trap where23Na atoms are immediately transferred to |1, 1〉 for further effective cooling to avoid the strong three-body loss between23Na atoms in |2, 2〉 and40K atoms in |9/2, 9/2〉. At the end of the evaporation in optical trap, a degenerate Fermi gas of40K with 1.9 × 10^(5) atoms at T/TF= 0.5 in the |9/2, 9/2〉 hyperfine state coexists with a Bose–Einstein condensate(BEC) of23Na with 8 × 10^(4) atoms in the |1, 1〉 hyperfine state at 300 n K. We also can produce the two species mixture with the tunable population imbalance by adjusting the 23Na magneto–optical trap loading time.
基金supported by the National Natural Science Foundation of China(Grant No.11304281)the Natural Science Foundation of Zhejiang Province,China(Grant No.LY13D060002)
文摘We investigate the topological phase marked by the Thouless–Kohmoto–Nightingale–Nijs(TKNN) number and the phase transitions driven by the next nearest neighbor(NNN) hopping in noncentrosymmetric cold Fermi gases, both spinsinglet pairing and spin-triplet pairing are considered. There exists a critical t'c for the NNN hopping, at which the quantum phase transition occurs, and the system changes from an Abelian(non-Abelian) phase to a non-Abelian(Abelian) one. By numerically diagonalizing the Hamiltonian in the real space, the energy spectra with edge states for different topological phases and the Majorana zero modes are discussed. Although the spin-triplet pairing does not contribute to the gap closing and the phase diagram, it induces gapless states in the presence of a magnetic field, and the TKNN number in this region is still zero.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12034011,92065108,11974224,12022406,and 12004229)the National Key Research and Development Program of China(Grant No.2018YFA0307601)+1 种基金the Fund for Shanxi 1331 Project Key Subjects Constructionthe Program of Youth Sanjin Scholar。
文摘We demonstrate that dual dark magnetic-optical-traps(MOTs)have great importance in the two-species^(87)Rb and^(40)K mixture compared with dual bright MOTs.The dark MOT has a little improvement in the trapping of single-species^(87)Rb or^(40)K gases compared with bright MOT.For the case of loading two-species^(87)Rb and^(40)K simultaneously,the improvement of^(40)K in the dual dark MOTs is mainly from the reduction of light-assisted collision losses.The dual dark MOTs employ a pair of conical lenses to produce the hollow beam for repump laser with high efficiency.The number and density of^(87)Rb and^(40)K atoms after evaporative cooling in the hybrid magnetic trap with dark MOT loading are compared with those in bright MOT.The atoms with large number and high density make it easier to realize the quantum degenerate of Bose-Fermi mixture.