Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materia...Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materials constituting the Gobi result in notable differences in saltation processes across various Gobi surfaces.It is challenging to describe these processes according to a uniform morphology.Therefore,it becomes imperative to articulate surface characteristics through parameters such as the three-dimensional(3D)size and shape of gravel.Collecting morphology information for Gobi gravels is essential for studying its genesis and sand saltation.To enhance the efficiency and information yield of gravel parameter measurements,this study conducted field experiments in the Gobi region across Dunhuang City,Guazhou County,and Yumen City(administrated by Jiuquan City),Gansu Province,China in March 2023.A research framework and methodology for measuring 3D parameters of gravel using point cloud were developed,alongside improved calculation formulas for 3D parameters including gravel grain size,volume,flatness,roundness,sphericity,and equivalent grain size.Leveraging multi-view geometry technology for 3D reconstruction allowed for establishing an optimal data acquisition scheme characterized by high point cloud reconstruction efficiency and clear quality.Additionally,the proposed methodology incorporated point cloud clustering,segmentation,and filtering techniques to isolate individual gravel point clouds.Advanced point cloud algorithms,including the Oriented Bounding Box(OBB),point cloud slicing method,and point cloud triangulation,were then deployed to calculate the 3D parameters of individual gravels.These systematic processes allow precise and detailed characterization of individual gravels.For gravel grain size and volume,the correlation coefficients between point cloud and manual measurements all exceeded 0.9000,confirming the feasibility of the proposed methodology for measuring 3D parameters of individual gravels.The proposed workflow yields accurate calculations of relevant parameters for Gobi gravels,providing essential data support for subsequent studies on Gobi environments.展开更多
针对快速搜索随机树(RRT)算法在航迹规划过程中存在采样点扩展随机性强、航迹曲折不平滑等问题,提出了一种基于约束随机采样点的RRT(Constrained Random Sampling-based RRT,CRS-RRT)算法。该算法引入人工势场法中的引力场势能函数约束...针对快速搜索随机树(RRT)算法在航迹规划过程中存在采样点扩展随机性强、航迹曲折不平滑等问题,提出了一种基于约束随机采样点的RRT(Constrained Random Sampling-based RRT,CRS-RRT)算法。该算法引入人工势场法中的引力场势能函数约束随机采样点在目标点附近采样,引导随机树朝着目标点生长,提高算法的规划速度,并结合去除冗余节点策略和Minimum Snap航迹平滑方法,在复杂三维环境中可快速生成一条安全、平滑且满足无人机动力学约束的航迹。仿真结果表明,该算法有效提高航迹规划速度并缩短航迹长度。展开更多
针对快速搜索随机树(rapidly-exploring random tree,RRT)算法在避障路径规划中存在的对地图适应性弱、采样质量差、无效节点多、规划时间长及路径质量差等问题,提出了一种改进RRT算法。首先,在传统RRT算法的基础上,基于地图复杂程度评...针对快速搜索随机树(rapidly-exploring random tree,RRT)算法在避障路径规划中存在的对地图适应性弱、采样质量差、无效节点多、规划时间长及路径质量差等问题,提出了一种改进RRT算法。首先,在传统RRT算法的基础上,基于地图复杂程度评估策略计算得到合适的步长及偏置概率,以实现对不同地图的自适应。然后,通过采样区域动态更新策略,使随机树在有效区域内进行采样,以确保随机树的正向生长;在确定采样区域后,利用采样点优化策略来提高采样点的有效性,使得随机树朝目标点附近生长。最后,采用节点重连策略对规划的初始避障路径进行优化,以获得一条弯折次数较少的避障路径。在Python及MATLAB环境中对改进RRT算法的可行性进行验证。结果表明,在面向复杂程度不同的地图和应用于机械臂时,改进RRT算法均能快速规划出一条无碰撞的高质量路径。研究结果可为提高机器人避障路径的规划效率提供参考。展开更多
基金funded by the National Natural Science Foundation of China(42071014).
文摘Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materials constituting the Gobi result in notable differences in saltation processes across various Gobi surfaces.It is challenging to describe these processes according to a uniform morphology.Therefore,it becomes imperative to articulate surface characteristics through parameters such as the three-dimensional(3D)size and shape of gravel.Collecting morphology information for Gobi gravels is essential for studying its genesis and sand saltation.To enhance the efficiency and information yield of gravel parameter measurements,this study conducted field experiments in the Gobi region across Dunhuang City,Guazhou County,and Yumen City(administrated by Jiuquan City),Gansu Province,China in March 2023.A research framework and methodology for measuring 3D parameters of gravel using point cloud were developed,alongside improved calculation formulas for 3D parameters including gravel grain size,volume,flatness,roundness,sphericity,and equivalent grain size.Leveraging multi-view geometry technology for 3D reconstruction allowed for establishing an optimal data acquisition scheme characterized by high point cloud reconstruction efficiency and clear quality.Additionally,the proposed methodology incorporated point cloud clustering,segmentation,and filtering techniques to isolate individual gravel point clouds.Advanced point cloud algorithms,including the Oriented Bounding Box(OBB),point cloud slicing method,and point cloud triangulation,were then deployed to calculate the 3D parameters of individual gravels.These systematic processes allow precise and detailed characterization of individual gravels.For gravel grain size and volume,the correlation coefficients between point cloud and manual measurements all exceeded 0.9000,confirming the feasibility of the proposed methodology for measuring 3D parameters of individual gravels.The proposed workflow yields accurate calculations of relevant parameters for Gobi gravels,providing essential data support for subsequent studies on Gobi environments.
文摘针对快速搜索随机树(RRT)算法在航迹规划过程中存在采样点扩展随机性强、航迹曲折不平滑等问题,提出了一种基于约束随机采样点的RRT(Constrained Random Sampling-based RRT,CRS-RRT)算法。该算法引入人工势场法中的引力场势能函数约束随机采样点在目标点附近采样,引导随机树朝着目标点生长,提高算法的规划速度,并结合去除冗余节点策略和Minimum Snap航迹平滑方法,在复杂三维环境中可快速生成一条安全、平滑且满足无人机动力学约束的航迹。仿真结果表明,该算法有效提高航迹规划速度并缩短航迹长度。
文摘针对快速搜索随机树(rapidly-exploring random tree,RRT)算法在避障路径规划中存在的对地图适应性弱、采样质量差、无效节点多、规划时间长及路径质量差等问题,提出了一种改进RRT算法。首先,在传统RRT算法的基础上,基于地图复杂程度评估策略计算得到合适的步长及偏置概率,以实现对不同地图的自适应。然后,通过采样区域动态更新策略,使随机树在有效区域内进行采样,以确保随机树的正向生长;在确定采样区域后,利用采样点优化策略来提高采样点的有效性,使得随机树朝目标点附近生长。最后,采用节点重连策略对规划的初始避障路径进行优化,以获得一条弯折次数较少的避障路径。在Python及MATLAB环境中对改进RRT算法的可行性进行验证。结果表明,在面向复杂程度不同的地图和应用于机械臂时,改进RRT算法均能快速规划出一条无碰撞的高质量路径。研究结果可为提高机器人避障路径的规划效率提供参考。