Super-clean and super-spherical FGH4095 superalloy powder is produced by the ceramic-free electrode inductionmelt inert gas atomization(EIGA) technique.A continuous and steady-state liquid metal flow is achieved at ...Super-clean and super-spherical FGH4095 superalloy powder is produced by the ceramic-free electrode inductionmelt inert gas atomization(EIGA) technique.A continuous and steady-state liquid metal flow is achieved at high-frequency(350 k Hz) alternating current and high electric power(100 k W).The superalloy is immersed in a high-frequency induction coil,and the liquid metal falling into a supersonic nozzle is atomized by an Ar gas of high kinetic gas energy.Numerical calculations are performed to optimize the structure parameters for the nozzle tip.The undesired oxidation reaction of alloying elements starts at 1000℃ with the reaction originating from the active sites on the powder surfaces,leading to the formation of oxides,MexOy.The role of active sites and kinetic factors associated with the diffusion of oxygen present in the atomization gas streams are also examined.The observed results reveal that the oxidation process occurring at the surface of the produced powders gradually moves toward the core,and that there exists a clear interface between the product layer and the reactant.The present study lays a theoretical foundation for controlling the oxidation of nickel-based superalloy powders from the powder process step.展开更多
In order to study the hot workability and to optimize the processing parameters for spray formed FGH4095 superalloy, thermal compression tests for spray formed FGH4095 superalloy have been finished by using a Gleeble ...In order to study the hot workability and to optimize the processing parameters for spray formed FGH4095 superalloy, thermal compression tests for spray formed FGH4095 superalloy have been finished by using a Gleeble 1500 thermal simulated test machine at the strain rates of 0.01-10.0 s 1 and temperatures of 1 050-1 140 ℃. The effects of strain rate and deformation temperature on the true stress-true strain curves and microstructure evolution were investigated. The results show that the generation of dynamic recrystallization (DRX) depends sensitively on deformation temperature. When the temperature was lower than 1080 ~C, long and" narrow necklace grains were shown in the microstructure. When the temperature increased to 1 140 ℃, new recrystallization grains were genera-ted. The size and shape of X' precipitates in the grains have a very important effect as factors of hindering sufficient migration of dislocations on plastic deformation. The result of thermal processing map is in accord with the micro-structure observation, and the best material thermal processing temperature is above 1 128 ℃.展开更多
文摘Super-clean and super-spherical FGH4095 superalloy powder is produced by the ceramic-free electrode inductionmelt inert gas atomization(EIGA) technique.A continuous and steady-state liquid metal flow is achieved at high-frequency(350 k Hz) alternating current and high electric power(100 k W).The superalloy is immersed in a high-frequency induction coil,and the liquid metal falling into a supersonic nozzle is atomized by an Ar gas of high kinetic gas energy.Numerical calculations are performed to optimize the structure parameters for the nozzle tip.The undesired oxidation reaction of alloying elements starts at 1000℃ with the reaction originating from the active sites on the powder surfaces,leading to the formation of oxides,MexOy.The role of active sites and kinetic factors associated with the diffusion of oxygen present in the atomization gas streams are also examined.The observed results reveal that the oxidation process occurring at the surface of the produced powders gradually moves toward the core,and that there exists a clear interface between the product layer and the reactant.The present study lays a theoretical foundation for controlling the oxidation of nickel-based superalloy powders from the powder process step.
基金Item Sponsored by National Natural Science Foundation of China ( 50974016 )
文摘In order to study the hot workability and to optimize the processing parameters for spray formed FGH4095 superalloy, thermal compression tests for spray formed FGH4095 superalloy have been finished by using a Gleeble 1500 thermal simulated test machine at the strain rates of 0.01-10.0 s 1 and temperatures of 1 050-1 140 ℃. The effects of strain rate and deformation temperature on the true stress-true strain curves and microstructure evolution were investigated. The results show that the generation of dynamic recrystallization (DRX) depends sensitively on deformation temperature. When the temperature was lower than 1080 ~C, long and" narrow necklace grains were shown in the microstructure. When the temperature increased to 1 140 ℃, new recrystallization grains were genera-ted. The size and shape of X' precipitates in the grains have a very important effect as factors of hindering sufficient migration of dislocations on plastic deformation. The result of thermal processing map is in accord with the micro-structure observation, and the best material thermal processing temperature is above 1 128 ℃.