By means of a comprehensive theory of elasticity, namely, a nonlocal strain gradient continuum theory, size-dependent nonlinear axial instability characteristics of cylindrical nanoshells made of functionally graded m...By means of a comprehensive theory of elasticity, namely, a nonlocal strain gradient continuum theory, size-dependent nonlinear axial instability characteristics of cylindrical nanoshells made of functionally graded material(FGM) are examined. To take small scale effects into consideration in a more accurate way, a nonlocal stress field parameter and an internal length scale parameter are incorporated simultaneously into an exponential shear deformation shell theory. The variation of material properties associated with FGM nanoshells is supposed along the shell thickness, and it is modeled based on the Mori-Tanaka homogenization scheme. With a boundary layer theory of shell buckling and a perturbation-based solving process, the nonlocal strain gradient load-deflection and load-shortening stability paths are derived explicitly. It is observed that the strain gradient size effect causes to the increases of both the critical axial buckling load and the width of snap-through phenomenon related to the postbuckling regime, while the nonlocal size dependency leads to the decreases of them. Moreover, the influence of the nonlocal type of small scale effect on the axial instability characteristics of FGM nanoshells is more than that of the strain gradient one.展开更多
This paper is concerned with the wave propagation behavior of rotating functionally graded(FG)temperature-dependent nanoscale beams subjected to thermal loading based on nonlocal strain gradient stress field.Uniform...This paper is concerned with the wave propagation behavior of rotating functionally graded(FG)temperature-dependent nanoscale beams subjected to thermal loading based on nonlocal strain gradient stress field.Uniform,linear and nonlinear temperature distributions across the thickness are investigated.Thermo-elastic properties of FG beam change gradually according to the Mori–Tanaka distribution model in the spatial coordinate.The nanobeam is modeled via a higher-order shear deformable refined beam theory which has a trigonometric shear stress function.The governing equations are derived by Hamilton’s principle as a function of axial force due to centrifugal stiffening and displacement.The solution of these equations is provided employing a Galerkin-based approach which has the potential to capture various boundary conditions.By applying an analytical solution and solving an eigenvalue problem,the dispersion relations of rotating FG nanobeam are obtained.Numerical results illustrate that various parameters including temperature change,angular velocity,nonlocality parameter,wave number and gradient index have significant effects on the wave dispersion characteristics of the nanobeam under study.The outcome of this study can provide beneficial information for the next-generation research and the exact design of nano-machines including nanoscale molecular bearings,nanogears,etc.展开更多
文摘By means of a comprehensive theory of elasticity, namely, a nonlocal strain gradient continuum theory, size-dependent nonlinear axial instability characteristics of cylindrical nanoshells made of functionally graded material(FGM) are examined. To take small scale effects into consideration in a more accurate way, a nonlocal stress field parameter and an internal length scale parameter are incorporated simultaneously into an exponential shear deformation shell theory. The variation of material properties associated with FGM nanoshells is supposed along the shell thickness, and it is modeled based on the Mori-Tanaka homogenization scheme. With a boundary layer theory of shell buckling and a perturbation-based solving process, the nonlocal strain gradient load-deflection and load-shortening stability paths are derived explicitly. It is observed that the strain gradient size effect causes to the increases of both the critical axial buckling load and the width of snap-through phenomenon related to the postbuckling regime, while the nonlocal size dependency leads to the decreases of them. Moreover, the influence of the nonlocal type of small scale effect on the axial instability characteristics of FGM nanoshells is more than that of the strain gradient one.
文摘This paper is concerned with the wave propagation behavior of rotating functionally graded(FG)temperature-dependent nanoscale beams subjected to thermal loading based on nonlocal strain gradient stress field.Uniform,linear and nonlinear temperature distributions across the thickness are investigated.Thermo-elastic properties of FG beam change gradually according to the Mori–Tanaka distribution model in the spatial coordinate.The nanobeam is modeled via a higher-order shear deformable refined beam theory which has a trigonometric shear stress function.The governing equations are derived by Hamilton’s principle as a function of axial force due to centrifugal stiffening and displacement.The solution of these equations is provided employing a Galerkin-based approach which has the potential to capture various boundary conditions.By applying an analytical solution and solving an eigenvalue problem,the dispersion relations of rotating FG nanobeam are obtained.Numerical results illustrate that various parameters including temperature change,angular velocity,nonlocality parameter,wave number and gradient index have significant effects on the wave dispersion characteristics of the nanobeam under study.The outcome of this study can provide beneficial information for the next-generation research and the exact design of nano-machines including nanoscale molecular bearings,nanogears,etc.