针对当前地面激光扫描(TLS)点云配准自动化程度低且耗时的问题,本文提出一种基于特征点和改进FGR(fast global registration)算法的TLS点云全局配准方法。该方法一共分为三步:首先对点云进行粗差剔除和降采样;然后提取Do G(Difference-o...针对当前地面激光扫描(TLS)点云配准自动化程度低且耗时的问题,本文提出一种基于特征点和改进FGR(fast global registration)算法的TLS点云全局配准方法。该方法一共分为三步:首先对点云进行粗差剔除和降采样;然后提取Do G(Difference-of-Gaussian)特征点和进行FPFH(fast point feature histogram)描述,进而进行双向一致性匹配;最后使用FGR算法进行优化获得点云之间初始参数,结合标准ICP算法实现TLS点云的高精度配准。利用7站地面激光点云数据进行实验,结果表明本方法可以在保证配准精度的前提下获得较高的配准效率。展开更多
文摘针对当前地面激光扫描(TLS)点云配准自动化程度低且耗时的问题,本文提出一种基于特征点和改进FGR(fast global registration)算法的TLS点云全局配准方法。该方法一共分为三步:首先对点云进行粗差剔除和降采样;然后提取Do G(Difference-of-Gaussian)特征点和进行FPFH(fast point feature histogram)描述,进而进行双向一致性匹配;最后使用FGR算法进行优化获得点云之间初始参数,结合标准ICP算法实现TLS点云的高精度配准。利用7站地面激光点云数据进行实验,结果表明本方法可以在保证配准精度的前提下获得较高的配准效率。