期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进Fisher准则的深度卷积生成对抗网络算法 被引量:3
1
作者 张浩 齐光磊 +1 位作者 侯小刚 郑凯梅 《光学精密工程》 EI CAS CSCD 北大核心 2022年第24期3239-3249,共11页
针对当训练样本量不足或者迭代次数降低时生成图像质量急剧下降的问题,提出了一种基于改进Fisher准则的深度卷积生成对抗网络算法(FDCGAN,Deep Convolutional Generative Adversarial Network algorithm based on improved Fisher’s cr... 针对当训练样本量不足或者迭代次数降低时生成图像质量急剧下降的问题,提出了一种基于改进Fisher准则的深度卷积生成对抗网络算法(FDCGAN,Deep Convolutional Generative Adversarial Network algorithm based on improved Fisher’s criterion)。该方法在判别模型中添加线性层,用来提取类别信息。在反向传播中采用基于Fisher的约束准则,结合标签和类别信息,在权值的迭代调整时既考虑误差的最小化,又同时让样本保持类内距离小、类间距离大,从而使权值能更加快速地逼近最优值。通过与最新不同的6个网络模型进行对比实验,FDCGAN模型在FID指标上均取得了较好的效果。此外,通过将该方法运用到目前先进模型上进行泛化测试,实验结果均取得较理想的效果。 展开更多
关键词 深度卷积生成对抗网络 FISHER准则 反向传播算法 fid评价指标
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部