[目的/意义]构建基于用户兴趣标签的网络社团识别模型(Fuzzy Interests and User Hybrid Model,FIUHM),揭示用户兴趣与社团形式概念间的模糊层级关系,实现多粒度属性与社团拓扑结构的层次聚类。[方法/过程]通过抽取豆瓣电影社区数据,实...[目的/意义]构建基于用户兴趣标签的网络社团识别模型(Fuzzy Interests and User Hybrid Model,FIUHM),揭示用户兴趣与社团形式概念间的模糊层级关系,实现多粒度属性与社团拓扑结构的层次聚类。[方法/过程]通过抽取豆瓣电影社区数据,实现基于用户标签的兴趣强度语义标注,利用用户相似度,获取社区用户间兴趣语义距离;将网络社区的领接矩阵映射为社团形式背景,构建社团模糊概念格,建立社团形式概念及其偏序关系集,完成社团形式概念建模;通过计算社团稳定指数,识别网络社团边界,并聚类最大独立社团,实现兴趣社团的在线检测。[结果/结论]通过对比实验,验证了FIUHM模型的有效性,实验表明将模糊形式概念分析引入网络社团识别研究,利用模糊概念格的偏序关系建模用户节点间的兴趣相似度,有利于提高社团识别的分辨率。展开更多
文摘[目的/意义]构建基于用户兴趣标签的网络社团识别模型(Fuzzy Interests and User Hybrid Model,FIUHM),揭示用户兴趣与社团形式概念间的模糊层级关系,实现多粒度属性与社团拓扑结构的层次聚类。[方法/过程]通过抽取豆瓣电影社区数据,实现基于用户标签的兴趣强度语义标注,利用用户相似度,获取社区用户间兴趣语义距离;将网络社区的领接矩阵映射为社团形式背景,构建社团模糊概念格,建立社团形式概念及其偏序关系集,完成社团形式概念建模;通过计算社团稳定指数,识别网络社团边界,并聚类最大独立社团,实现兴趣社团的在线检测。[结果/结论]通过对比实验,验证了FIUHM模型的有效性,实验表明将模糊形式概念分析引入网络社团识别研究,利用模糊概念格的偏序关系建模用户节点间的兴趣相似度,有利于提高社团识别的分辨率。