Based on reason analyses for frequent flameout of HG-1025/18.2-YM6 boiler in a given power plant after coal quality variation, major factors such as unreasonable burner structure and inappropriate secondary air distri...Based on reason analyses for frequent flameout of HG-1025/18.2-YM6 boiler in a given power plant after coal quality variation, major factors such as unreasonable burner structure and inappropriate secondary air distribution were discussed in detail. A new mode of secondary air distribution was introduced to optimize the combustion performance, and a lower burner was retrofitted by increasing the relative distance between the primary air fuel rich-lean nozzles and reducing the size of waist air nozzles as well. As a result, the recirculating zone became more stable and the burner's combustion stability was improved.Practical operation shows that the modifications are so effective that the flameout problems caused by instable combustion never occur in operation.展开更多
In this study,boron–magnesium agglomerates with varying mass ratios were prepared by drying a micron-sized boron–magnesium mixed suspension,and the combustion process of these agglomerates under different oxygen-ric...In this study,boron–magnesium agglomerates with varying mass ratios were prepared by drying a micron-sized boron–magnesium mixed suspension,and the combustion process of these agglomerates under different oxygen-rich concentrations were investigated using a laser ignition system.The test results showed that when the mass fraction of magnesium powder in boron-magnesium agglomerates exceeded a certain threshold(between 2%and 5%),flame extinction and reignition occurred after a significant reduction in the agglomerate volume during combustion.This process is referred to as the transient flameout process,which is affected by the magnesium content of the agglomerate and the oxygen concentration in the ambient atmosphere.An increase in the magnesium content or oxygen concentration makes this phenomenon more pronounced.During weakening of the flame intensity,a dark film gradually covered the particle surfaces.X-ray diffraction and elemental analyses of the cross-section and outer surface of the condensed combustion product suggested that the dark film is primarily composed of Mg-B-O ternary oxides.This film prevents direct contact between boron and oxygen,thereby inhibiting surface and gas-phase reactions and leading to the occurrence of the transient flameout phenomenon.展开更多
文摘Based on reason analyses for frequent flameout of HG-1025/18.2-YM6 boiler in a given power plant after coal quality variation, major factors such as unreasonable burner structure and inappropriate secondary air distribution were discussed in detail. A new mode of secondary air distribution was introduced to optimize the combustion performance, and a lower burner was retrofitted by increasing the relative distance between the primary air fuel rich-lean nozzles and reducing the size of waist air nozzles as well. As a result, the recirculating zone became more stable and the burner's combustion stability was improved.Practical operation shows that the modifications are so effective that the flameout problems caused by instable combustion never occur in operation.
基金financial support provided by the National Natural Science Foundation of China(grant No.52006240)supported by Hunan Provincial Natural Science Foundation of China(grant No.2020JJ4665 and No.2021JJ30775).
文摘In this study,boron–magnesium agglomerates with varying mass ratios were prepared by drying a micron-sized boron–magnesium mixed suspension,and the combustion process of these agglomerates under different oxygen-rich concentrations were investigated using a laser ignition system.The test results showed that when the mass fraction of magnesium powder in boron-magnesium agglomerates exceeded a certain threshold(between 2%and 5%),flame extinction and reignition occurred after a significant reduction in the agglomerate volume during combustion.This process is referred to as the transient flameout process,which is affected by the magnesium content of the agglomerate and the oxygen concentration in the ambient atmosphere.An increase in the magnesium content or oxygen concentration makes this phenomenon more pronounced.During weakening of the flame intensity,a dark film gradually covered the particle surfaces.X-ray diffraction and elemental analyses of the cross-section and outer surface of the condensed combustion product suggested that the dark film is primarily composed of Mg-B-O ternary oxides.This film prevents direct contact between boron and oxygen,thereby inhibiting surface and gas-phase reactions and leading to the occurrence of the transient flameout phenomenon.