应用Realizable k-ε湍流模型和VOF(Volume of Fraction)两相流模型对某压力旋流喷嘴进行数值研究,分析了旋流室锥角、旋流孔角度及喷嘴入口压力变化对雾化锥角、雾化粒径及分布、液滴速度分布等参数的影响。结果表明:雾化锥角受旋流室...应用Realizable k-ε湍流模型和VOF(Volume of Fraction)两相流模型对某压力旋流喷嘴进行数值研究,分析了旋流室锥角、旋流孔角度及喷嘴入口压力变化对雾化锥角、雾化粒径及分布、液滴速度分布等参数的影响。结果表明:雾化锥角受旋流室锥角的影响幅度随压力增大而减小,雾化粒径及分布受旋流室锥角影响不明显,当旋流室锥角为90°时雾化范围广且雾化稳定性好;雾化锥角随旋流孔角度增大先增后减,当角度为45°时雾化锥角最大,平均粒径及其分布更佳;当喷嘴入口压力逐渐增大时,雾化锥角与雾化粒径均逐渐减小,液滴速度区间逐渐缩小,当入口压力达到0.4 MPa时,Sauter粒径及液滴粒径分布趋于稳定,液滴速度分布最为集中。展开更多
文摘应用Realizable k-ε湍流模型和VOF(Volume of Fraction)两相流模型对某压力旋流喷嘴进行数值研究,分析了旋流室锥角、旋流孔角度及喷嘴入口压力变化对雾化锥角、雾化粒径及分布、液滴速度分布等参数的影响。结果表明:雾化锥角受旋流室锥角的影响幅度随压力增大而减小,雾化粒径及分布受旋流室锥角影响不明显,当旋流室锥角为90°时雾化范围广且雾化稳定性好;雾化锥角随旋流孔角度增大先增后减,当角度为45°时雾化锥角最大,平均粒径及其分布更佳;当喷嘴入口压力逐渐增大时,雾化锥角与雾化粒径均逐渐减小,液滴速度区间逐渐缩小,当入口压力达到0.4 MPa时,Sauter粒径及液滴粒径分布趋于稳定,液滴速度分布最为集中。