期刊文献+
共找到216,617篇文章
< 1 2 250 >
每页显示 20 50 100
Modelling of debris-flow susceptibility and propagation: a case study from Northwest Himalaya
1
作者 Hamza DAUD Javed Iqbal TANOLI +5 位作者 Sardar Muhammad ASIF Muhammad QASIM Muhammad ALI Junaid KHAN Zahid Imran BHATTI Ishtiaq Ahmad Khan JADOON 《Journal of Mountain Science》 SCIE CSCD 2024年第1期200-217,共18页
The geological and geographical position of the Northwest Himalayas makes it a vulnerable area for mass movements particularly landslides and debris flows. Mass movements have had a substantial impact on the study are... The geological and geographical position of the Northwest Himalayas makes it a vulnerable area for mass movements particularly landslides and debris flows. Mass movements have had a substantial impact on the study area which is extending along Karakorum Highway(KKH) from Besham to Chilas. Intense seismicity, deep gorges, steep terrain and extreme climatic events trigger multiple mountain hazards along the KKH, among which debris flow is recognized as the most destructive geohazard. This study aims to prepare a field-based debris flow inventory map at a regional scale along a 200 km stretch from Besham to Chilas. A total of 117 debris flows were identified in the field, and subsequently, a point-based debris-flow inventory and catchment delineation were performed through Arc GIS analysis. Regional scale debris flow susceptibility and propagation maps were prepared using Weighted Overlay Method(WOM) and Flow-R technique sequentially. Predisposing factors include slope, slope aspect, elevation, Topographic Roughness Index(TRI), Topographic Wetness Index(TWI), stream buffer, distance to faults, lithology rainfall, curvature, and collapsed material layer. The dataset was randomly divided into training data(75%) and validation data(25%). Results were validated through the Receiver Operator Characteristics(ROC) curve. Results show that Area Under the Curve(AUC) using WOM model is 79.2%. Flow-R propagation of debris flow shows that the 13.15%, 22.94%, and 63.91% areas are very high, high, and low susceptible to debris flow respectively. The propagation predicated by Flow-R validates the naturally occurring debris flow propagation as observed in the field surveys. The output of this research will provide valuable input to the decision makers for the site selection, designing of the prevention system, and for the protection of current infrastructure. 展开更多
关键词 North Pakistan Debris flow flow-R Propagation Susceptibility mapping Debris-flow inventory Weighted Overlay Method
下载PDF
Dynamic Non-Invasive Detection of NADH Based on Blood Flow-Mediated Skin Fluorescence (FMSF) Method
2
作者 Peng Liu Tengfei Bi +2 位作者 Gongzhi Du Long Yan Huayi Hou 《Open Journal of Applied Sciences》 2024年第6期1437-1453,共17页
Nicotinamide adenine dinucleotide (NADH/NAD+) is involved in important biochemical reactions in human metabolism, including participation in energy production by mitochondria. The changes in fluorescence intensity as ... Nicotinamide adenine dinucleotide (NADH/NAD+) is involved in important biochemical reactions in human metabolism, including participation in energy production by mitochondria. The changes in fluorescence intensity as a function of time in response to blocking and releasing of blood flow in a forearm are used as a measure of oxygen transport with blood to the tissue, which directly correlates with the skin microcirculation status. In this paper, a non-invasive dynamic monitoring system based on blood flow-mediated skin fluorescence (FMSF) technology is developed to monitor the NADH fluorescence intensity of skin tissue during the process of blocking reactive hyperemia. Simultaneously, laser speckle contrast imaging (LSCI) and laser Doppler flowmetry (LDF) were used to observe blood flow, blood oxygen saturation (SOt2) and relative amount of hemoglobin (rHb) during the measurement process, which helped to explore NADH dynamics relevant physiological changes. A variety of parameters have been derived to describe NADH fluorescence curve based on the FMSF device. The experimental results are conducive to understanding the NADH measurement and the physiological processes related to it, which help FMSF to be a great avenue for in vivo physiological, clinical and pharmacological research on mitochondrial metabolism. 展开更多
关键词 Reduced Nicotinamide Adenine Dinucleotide (NADH) flow-Mediated Skin Fluorescence (FMSF) Laser Doppler flowmetry (LDF) Blood flow
下载PDF
Evaluating the stability and volumetric flowback rate of proppant packs in hydraulic fractures using the lattice Boltzmann-discrete element coupling method 被引量:1
3
作者 Duo Wang Sanbai Li +2 位作者 Rui Wang Binhui Li Zhejun Pan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2052-2063,共12页
The stability and mobility of proppant packs in hydraulic fractures during hydrocarbon production are numerically investigated by the lattice Boltzmann-discrete element coupling method(LB-DEM).This study starts with a... The stability and mobility of proppant packs in hydraulic fractures during hydrocarbon production are numerically investigated by the lattice Boltzmann-discrete element coupling method(LB-DEM).This study starts with a preliminary proppant settling test,from which a solid volume fraction of 0.575 is calibrated for the proppant pack in the fracture.In the established workflow to investigate proppant flowback,a displacement is applied to the fracture surfaces to compact the generated proppant pack as well as further mimicking proppant embedment under closure stress.When a pressure gradient is applied to drive the fluid-particle flow,a critical aperture-to-diameter ratio of 4 is observed,above which the proppant pack would collapse.The results also show that the volumetric proppant flowback rate increases quadratically with the fracture aperture,while a linear variation between the particle flux and the pressure gradient is exhibited for a fixed fracture aperture.The research outcome contributes towards an improved understanding of proppant flowback in hydraulic fractures,which also supports an optimised proppant size selection for hydraulic fracturing operations. 展开更多
关键词 Numerical simulation Hydraulic fracturing Proppant flowback Closure stress Particulate flow
下载PDF
Performance characteristics of the airlift pump under vertical solid-water-gas flow conditions for conveying centimetric-sized coal particles
4
作者 Parviz Enany Carsten Drebenshtedt 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第2期53-66,共14页
In this study,the installation of an airlift pump with inner diameter of 102 mm and length of 5.64 m was utilized to consider the conveying process of non-spherical coal particles with density of 1340 kg/m3 and graini... In this study,the installation of an airlift pump with inner diameter of 102 mm and length of 5.64 m was utilized to consider the conveying process of non-spherical coal particles with density of 1340 kg/m3 and graining 25-44.5 mm.The test results revealed that the magnitude of increase in the solid transport rate due to the changes in the three tested parameters between compressed air velocity,submergence ratio,and feeding coal possibility was not the same,which are stand in range of 20%,75%,and 40%,respectively.Hence,creating the optimal airlift pump performance is highly dependent on submergence ratio.More importantly,we measured the solid volume fraction using the method of one-way valves in order to minimize the disadvantages of conventional devices,such as fast speed camera and conductivity ring sensor.The results confirmed that the volume fraction of the solid phase in the transfer process was always less than 12%.To validate present experimental data,the existing empirical correlations together with the theoretical equations related to the multiphase flow was used.The overall agreement between the theory and experimental solid delivery results was particularly good instead of the first stage of conveying process.This drawback can be corrected by omitting the role of friction and shear stress at low air income velocity.It was also found that the model developed by Kalenik failed to predict the performance of our airlift operation in terms of the mass flow rate of the coal particles. 展开更多
关键词 Vertical velocity Non-spherical particle Submergence ratio Three-phase flow Churn flow Superficial velocity
下载PDF
Analysis and experimental study on resistance-increasing behavior of composite high efficiency autonomous inflow control device
5
作者 Liang-Liang Dong Yu-Lin Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1290-1304,共15页
Bottom water coning is the main reason to reduce the recovery of horizontal bottom water reservoir. By water coning, we mean the oil-water interface changes from a horizontal state to a mound-shaped cone and breaks th... Bottom water coning is the main reason to reduce the recovery of horizontal bottom water reservoir. By water coning, we mean the oil-water interface changes from a horizontal state to a mound-shaped cone and breaks through to the wellbore. Autonomous inflow control device(AICD) is an important instrument maintain normal production after bottom water coning, however, the resistance increasing ability of the swirl type AICD is insufficient at present, which seriously affects the water control effect. Aiming this problem, this paper designs a multi-stage resistance-increasing and composite type AICD. The separation mechanism of oil-water two phases in this structure, the resistance form of oil-water single phase and the resistance-increasing principle of water phase are analyzed. Establishing the dual-phase multi-stage separation and resistance-increasing model, and verified by measuring the throttling pressure drop and oil-water volume fraction of the AICD, it is found that the composite type AICD has the effect of ICD and AICD at the same time, which can balance the production rate of each well section at the initial stage of production, delay the occurrence of bottom water coning. In the middle and later stages of production, water-blocking can be effectively increased to achieve water control and stable production.After structural sensitivity analysis, the influence law of various structural parameters on the water control performance of composite AICD was obtained. The simulation calculation results show that,compared with the existing swirl type AICD, composite AICD has higher sensitivity to moisture content,the water phase throttling pressure drop is increased by 4.5 times on average. The composite AICD is suitable for the entire stage of horizontal well production. 展开更多
关键词 Water control flow separation flow resistance-increasing AICD device Simulation and experiment
下载PDF
A transient production prediction method for tight condensate gas wells with multiphase flow
6
作者 BAI Wenpeng CHENG Shiqing +3 位作者 WANG Yang CAI Dingning GUO Xinyang GUO Qiao 《Petroleum Exploration and Development》 SCIE 2024年第1期172-179,共8页
Considering the phase behaviors in condensate gas reservoirs and the oil-gas two-phase linear flow and boundary-dominated flow in the reservoir,a method for predicting the relationship between oil saturation and press... Considering the phase behaviors in condensate gas reservoirs and the oil-gas two-phase linear flow and boundary-dominated flow in the reservoir,a method for predicting the relationship between oil saturation and pressure in the full-path of tight condensate gas well is proposed,and a model for predicting the transient production from tight condensate gas wells with multiphase flow is established.The research indicates that the relationship curve between condensate oil saturation and pressure is crucial for calculating the pseudo-pressure.In the early stage of production or in areas far from the wellbore with high reservoir pressure,the condensate oil saturation can be calculated using early-stage production dynamic data through material balance models.In the late stage of production or in areas close to the wellbore with low reservoir pressure,the condensate oil saturation can be calculated using the data of constant composition expansion test.In the middle stages of production or when reservoir pressure is at an intermediate level,the data obtained from the previous two stages can be interpolated to form a complete full-path relationship curve between oil saturation and pressure.Through simulation and field application,the new method is verified to be reliable and practical.It can be applied for prediction of middle-stage and late-stage production of tight condensate gas wells and assessment of single-well recoverable reserves. 展开更多
关键词 tight reservoir condensate gas multiphase flow phase behavior transient flow PSEUDO-PRESSURE production prediction
下载PDF
Numerical and experimental study on the falling film flow characteristics with the effect of co-current gas flow in hydrogen liquefaction process
7
作者 Chong-Zheng Sun Yu-Xing Li +2 位作者 Hui Han Xiao-Yi Geng Xiao Lu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1369-1384,共16页
Liquid hydrogen storage and transportation is an effective method for large-scale transportation and utilization of hydrogen energy. Revealing the flow mechanism of cryogenic working fluid is the key to optimize heat ... Liquid hydrogen storage and transportation is an effective method for large-scale transportation and utilization of hydrogen energy. Revealing the flow mechanism of cryogenic working fluid is the key to optimize heat exchanger structure and hydrogen liquefaction process(LH2). The methods of cryogenic visualization experiment, theoretical analysis and numerical simulation are conducted to study the falling film flow characteristics with the effect of co-current gas flow in LH2spiral wound heat exchanger.The results show that the flow rate of mixed refrigerant has a great influence on liquid film spreading process, falling film flow pattern and heat transfer performance. The liquid film of LH2mixed refrigerant with column flow pattern can not uniformly and completely cover the tube wall surface. As liquid flow rate increases, the falling film flow pattern evolves into sheet-column flow and sheet flow, and liquid film completely covers the surface of tube wall. With the increase of shear effect of gas-phase mixed refrigerant in the same direction, the liquid film gradually becomes unstable, and the flow pattern eventually evolves into a mist flow. 展开更多
关键词 Hydrogen liquefaction Spiral wound heat exchanger flow pattern transition Falling film flow
下载PDF
Depositional process of hyperpycnal flow deposits:A case study on Lower Cretaceous Sangyuan outcrop in the Luanping Basin,Northeast China
8
作者 De-zhi Yan Ru-kai Zhu +8 位作者 Hao Shou Zhao-hui Xu Wei-hong Liu Si-cheng Zhu Zhi-cheng Lei Jing-ya Zhang Chang Liu Yi Cai Huai-min Xu 《China Geology》 CAS CSCD 2024年第3期505-516,共12页
Sedimentary process research is of great significance for understanding the distribution and characteristics of sediments.Through the detailed observation and measurement of the Sangyuan outcrop in Luanping Basin,this... Sedimentary process research is of great significance for understanding the distribution and characteristics of sediments.Through the detailed observation and measurement of the Sangyuan outcrop in Luanping Basin,this paper studies the depositional process of the hyperpycnal flow deposits,and divides their depositional process into three phases,namely,acceleration,erosion and deceleration.In the acceleration phase,hyperpycnal flow begins to enter the basin nearby,and then speeds up gradually.Deposits developed in the acceleration phase are reverse.In addition,the original deposits become unstable and are taken away by hyperpycnal flows under the eroding force.As a result,there are a lot of mixture of red mud pebbles outside the basin and gray mud pebbles within the basin.In the erosion phase,the reverse deposits are eroded and become thinner or even disappear.Therefore,no reverse grading characteristic is found in the proximal major channel that is closer to the source,but it is still preserved in the middle branch channel that is far from the source.After entering the deceleration phase,normally grading deposits appear and cover previous deposits.The final deposits in the basin are special.Some are reverse,and others are normal.They are superimposed with each other under the action of hyperpycnal flow.The analysis of the Sangyuan outcrop demonstrates the sedimentary process and distribution of hyperpycnites,and reasonably explain the sedimentary characteristics of hyperpycnites.It is helpful to the prediction of oil and gas exploration targets in gravity flow deposits. 展开更多
关键词 Hyperpycnal flow Sedimentary characteristics Depositional process Gravity flow deposit Hyperpycnite Red mud pebble Gray mud pebble Oil and gas exploration engineering Luanping Basin
下载PDF
Control of Nozzle Flow Using Rectangular Ribs at Sonic and Supersonic Mach Numbers
9
作者 Vigneshvaran Sethuraman Parvathy Rajendran +2 位作者 Sher Afghan Khan Abdul Aabid Muneer Baig 《Fluid Dynamics & Materials Processing》 EI 2024年第8期1847-1866,共20页
This study deals with base pressure management in a duct for various values of the Mach number(M),namely,Mach number corresponding to sonic and four supersonic conditions.In addition to the Mach number,the nozzle pres... This study deals with base pressure management in a duct for various values of the Mach number(M),namely,Mach number corresponding to sonic and four supersonic conditions.In addition to the Mach number,the nozzle pressure ratio(NPR),the area ratio,the rib dimension,and the duct length are influential parameters.The following specific values are examined at M=1,1.36,1.64,and 2,and NPRs between 1.5 and 10.The base pressure is determined by positioning ribs of varying heights at predetermined intervals throughout the length of the square duct.When the level of expansion is varied,it is seen that the base pressure initially drops for overexpanded flows and increases for under-expanded flows.When ribs are present,the flow field in the duct and pressure inside the duct fluctuate as the base pressure rises.Under-expanded flows can achieve a base pressure value that is suitably high without experiencing excessive changes in the duct flow in terms of static pressure if a rib height around 10%of the duct height close to the nozzle exit is considered.Rectangular rib passive control does not negatively affect the duct’s flow field. 展开更多
关键词 Base pressure internal flows RIBS suddenly expanded flow wall pressure
下载PDF
Coupled CFD-DEM Numerical Simulation of the Interaction of a Flow-Transported Rag with a Solid Cylinder
10
作者 Yun Ren Lianzheng Zhao +2 位作者 Xiaofan Mo Shuihua Zheng Youdong Yang 《Fluid Dynamics & Materials Processing》 EI 2024年第7期1593-1609,共17页
A coupled Computational Fluid Dynamics-Discrete Element Method(CFD-DEM)approach is used to calculate the interaction of a flexible rag transported by a fluid current with a fixed solid cylinder.More specifically a hyb... A coupled Computational Fluid Dynamics-Discrete Element Method(CFD-DEM)approach is used to calculate the interaction of a flexible rag transported by a fluid current with a fixed solid cylinder.More specifically a hybrid Eulerian-Lagrangian approach is used with the rag being modeled as a set of interconnected particles.The influence of various parameters is considered,namely the inlet velocity(1.5,2.0,and 2.5 m/s,respectively),the angle formed by the initially straight rag with the flow direction(45°,60°and 90°,respectively),and the inlet position(90,100,and 110 mm,respectively).The results show that the flow rate has a significant impact on the permeability of the rag.The higher the flow rate,the higher the permeability and the rag speed difference.The angle has a minor effect on rag permeability,with 45°being the most favorable angle for permeability.The inlet position has a small impact on rag permeability,while reducing the initial distance between the rag an the cylinder makes it easier for rags to pass through. 展开更多
关键词 RAG flow around cylinder flow characteristics numerical simulation
下载PDF
A New Device for Gas-Liquid Flow Measurements Relying on Forced Annular Flow
11
作者 Tiantian Yu Youping Lv +5 位作者 Hao Zhong Ming Liu Pingyuan Gai Zeju Jiang Peng Zhang Xingkai Zhang 《Fluid Dynamics & Materials Processing》 EI 2024年第8期1759-1772,共14页
A new measurement device,consisting of swirling blades and capsule-shaped throttling elements,is proposed in this study to eliminate typical measurement errors caused by complex flow patterns in gas-liquid flow.The sw... A new measurement device,consisting of swirling blades and capsule-shaped throttling elements,is proposed in this study to eliminate typical measurement errors caused by complex flow patterns in gas-liquid flow.The swirling blades are used to transform the complex flow pattern into a forced annular flow.Drawing on the research of existing blockage flow meters and also exploiting the single-phase flow measurement theory,a formula is introduced to measure the phase-separated flow of gas and liquid.The formula requires the pressure ratio,Lockhart-Martinelli number(L-M number),and the gas phase Froude number.The unknown parameters appearing in the formula are fitted through numerical simulation using computational fluid dynamics(CFD),which involves a comprehensive analysis of the flow field inside the device from multiple perspectives,and takes into account the influence of pressure fluctuations.Finally,the measurement model is validated through an experimental error analysis.The results demonstrate that the measurement error can be maintained within±8%for various flow patterns,including stratified flow,bubble flow,and wave flow. 展开更多
关键词 Gas-liquid flow measurement blocking flowmeter measurement model pressure fluctuations numerical simulation experimental control
下载PDF
基于Moldflow软件对薄壁件某塑料喷嘴的注塑方案优化研究
12
作者 袁志华 符烜赫 袁博 《机械工程师》 2024年第3期14-17,共4页
喷嘴注塑产品的质量和性能很大程度上由注塑方案和工艺参数所决定,不当的注塑方案和工艺参数会导致充填不足、熔接线过多、翘曲变形量大等问题。为了可以减少生产周期,节约生产成本,利用三维软件UG对喷嘴进行建模,基于模流分析软件Moldf... 喷嘴注塑产品的质量和性能很大程度上由注塑方案和工艺参数所决定,不当的注塑方案和工艺参数会导致充填不足、熔接线过多、翘曲变形量大等问题。为了可以减少生产周期,节约生产成本,利用三维软件UG对喷嘴进行建模,基于模流分析软件Moldflow软件对喷嘴注塑产品进行分析和优化,通过比较点浇口和侧浇口两种方案的分析结果,最终确定该产品点浇口的方案更好。并通过设计正交实验,得到优化后的工艺参数。 展开更多
关键词 喷嘴 MOLDflow 模流分析 浇口位置 正交优化
下载PDF
袋型阻尼密封动力学特性双控制体Bulk Flow模型
13
作者 桂佳强 李志刚 李军 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第7期26-38,共13页
为快速准确预测袋型阻尼密封泄漏特性和动力学特性,针对传统单控制体Bulk Flow模型预测精度低、无法预测交叉动力系数的问题,提出了袋型阻尼密封双控制体Bulk Flow模型和动力学特性数值预测方法,并开发了计算程序。首先,依据边界层理论... 为快速准确预测袋型阻尼密封泄漏特性和动力学特性,针对传统单控制体Bulk Flow模型预测精度低、无法预测交叉动力系数的问题,提出了袋型阻尼密封双控制体Bulk Flow模型和动力学特性数值预测方法,并开发了计算程序。首先,依据边界层理论,将袋型密封腔室划分为两个控制体,推导了控制体的连续性、周向动量和能量方程,引入Swamee-Jain和Takahashi方程,计算流体-壁面间和流体-流体间的周向黏性摩擦力;其次,采用牛顿-拉夫森算法和摄动分析法分别求解0阶和1阶控制方程,获得各刚度、阻尼动力特性系数;然后,通过与袋型阻尼密封泄漏量和动力特性系数的实验值、单控制体Bulk Flow模型和非定常计算流体动力学(CFD)数值结果进行比较,验证了模型和方法的准确性和可靠性;最后,研究了转子转速(10 000、15 000、20 000 r/min)和预旋比(0.067、0.724、0.997)对袋型阻尼密封动力学特性的影响。结果表明:所发展的模型和方法具有计算速度快、预测精度高(泄漏量预测误差小于6%,动力特性系数预测误差小于38%)的优点;转子转速和进口预旋的增大均会导致袋型阻尼密封有效阻尼显著减小,穿越频率显著增大,易诱发轴系失稳。 展开更多
关键词 袋型阻尼密封 泄漏特性 动力学特性 双控制体 Bulk flow模型
下载PDF
肝硬化患者4D flow MRI血流动力学参数与中医证型的相关性研究
14
作者 胡勤勤 姜阳 +3 位作者 张玉龙 方玉 梁仁容 杨华 《中国中医急症》 2024年第6期982-985,989,共5页
目的探讨肝硬化患者4D flow MRI血流动力学参数与中医证型的相关性。方法将118例肝硬化患者依据中医辨证分为肝气郁结证、湿热蕴结证、肝肾阴虚证、脾肾阳虚证、瘀血阻络证5个证型,所有患者均行门静脉4D flow MRI检查,统计不同证型肝硬... 目的探讨肝硬化患者4D flow MRI血流动力学参数与中医证型的相关性。方法将118例肝硬化患者依据中医辨证分为肝气郁结证、湿热蕴结证、肝肾阴虚证、脾肾阳虚证、瘀血阻络证5个证型,所有患者均行门静脉4D flow MRI检查,统计不同证型肝硬化患者分布情况,观察门静脉系统(门静脉主干、脾静脉、肠系膜上静脉)的血流动力学参数,包括血流量、流速、壁剪切力等,比较不同证型患者门静脉血流动力学参数差异。结果肝硬化代偿期以肝气郁结证、湿热蕴结证为主,肝硬化失代偿期以脾肾阳虚、瘀血络阻证为主;A级以肝气郁结证、湿热蕴结证为主,B、C级以瘀血络阻证为主。瘀血络阻证肝硬化患者门静脉主干及脾静脉血流量明显高于肝气郁结证、湿热蕴结证患者(P<0.05);脾肾阳虚证门静脉主干血流量明显高于肝气郁结证肝硬化患者(P<0.05);瘀血络阻证肝硬化患者门静脉主干流速及剪切力较肝气郁结证和湿热蕴结证低。结论肝硬化患者中医辨证分型与门静脉血流动力学参数具有一定相关性,4D flow MRI可为肝硬化的中医辨证提供血流动力学参考。 展开更多
关键词 肝硬化 4D flow MRI 血流动力学 中医证型
下载PDF
A semi-analytical model for coupled flow in stress-sensitive multi-scale shale reservoirs with fractal characteristics 被引量:1
15
作者 Qian Zhang Wen-Dong Wang +4 位作者 Yu-Liang Su Wei Chen Zheng-Dong Lei Lei Li Yong-Mao Hao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期327-342,共16页
A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes... A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes due to stress sensitivity, which plays a crucial role in controlling pressure propagation and oil flow. This paper proposes a multi-scale coupled flow mathematical model of matrix nanopores, induced fractures, and hydraulic fractures. In this model, the micro-scale effects of shale oil flow in fractal nanopores, fractal induced fracture network, and stress sensitivity of multi-scale media are considered. We solved the model iteratively using Pedrosa transform, semi-analytic Segmented Bessel function, Laplace transform. The results of this model exhibit good agreement with the numerical solution and field production data, confirming the high accuracy of the model. As well, the influence of stress sensitivity on permeability, pressure and production is analyzed. It is shown that the permeability and production decrease significantly when induced fractures are weakly supported. Closed induced fractures can inhibit interporosity flow in the stimulated reservoir volume (SRV). It has been shown in sensitivity analysis that hydraulic fractures are beneficial to early production, and induced fractures in SRV are beneficial to middle production. The model can characterize multi-scale flow characteristics of shale oil, providing theoretical guidance for rapid productivity evaluation. 展开更多
关键词 Multi-scale coupled flow Stress sensitivity Shale oil Micro-scale effect Fractal theory
下载PDF
An inverse analysis of fluid flow through granular media using differentiable lattice Boltzmann method 被引量:1
16
作者 Qiuyu Wang Krishna Kumar 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2077-2090,共14页
This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeabi... This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeability,and fluid components,like viscosity.The primary aim is to deduce either constant pressure head or pressure profiles,given the known velocity field at a steady-state flow through a conduit containing obstacles,including walls,spheres,and grains.The lattice Boltzmann method(LBM)combined with automatic differentiation(AD)(AD-LBM)is employed,with the help of the GPU-capable Taichi programming language.A lightweight tape is used to generate gradients for the entire LBM simulation,enabling end-to-end backpropagation.Our AD-LBM approach accurately estimates the boundary conditions for complex flow paths in porous media,leading to observed steady-state velocity fields and deriving macro-scale permeability and fluid viscosity.The method demonstrates significant advantages in terms of prediction accuracy and computational efficiency,making it a powerful tool for solving inverse fluid flow problems in various applications. 展开更多
关键词 Inverse problem Fluid flow Granular media Automatic differentiation(AD) Lattice Boltzmann method(LBM)
下载PDF
V Flow技术测量颈动脉壁面剪应力的一致性研究
17
作者 加依达尔·沙亚哈提 周琛云 陈曼琳 《四川医学》 CAS 2024年第1期28-34,共7页
目的评价血流向量成像(V Flow)技术在测量健康成年人颈动脉壁面剪应力(WSS)中的一致性。方法于2021年2月至2021年3月招募健康成年志愿者20人,由2名不同年资的超声医师使用配备V Flow功能的Mindray Resona 7超声仪和3~9 MHz线阵探头进行... 目的评价血流向量成像(V Flow)技术在测量健康成年人颈动脉壁面剪应力(WSS)中的一致性。方法于2021年2月至2021年3月招募健康成年志愿者20人,由2名不同年资的超声医师使用配备V Flow功能的Mindray Resona 7超声仪和3~9 MHz线阵探头进行双侧颈动脉扫查,分别采集双侧颈总动脉远段、颈总动脉分叉至颈内动脉起始部两段动脉的动态V Flow图像,测量两侧颈总动脉远段的近心端、远心端、分叉处及颈内动脉起始部的前、后壁的WSS,使用组内相关系数(ICC)和Bland-Altman图评估组内一致性及组间一致性。结果双侧颈动脉前、后壁的4个不同节段之间WSS值差异均有统计学意义(P<0.05)。高年资超声医师2次测量结果的一致性结果显示,左侧颈总动脉远段的远心端一致性极好(ICC 0.779),右侧颈总动脉远段的近心端(ICC 0.605)、远心端(ICC 0.585)、颈内动脉起始部(ICC 0.457)、左侧颈总动脉分叉处(ICC 0.606)及颈内动脉起始部(ICC 0.702)一致性均较好;不同年资超声医师的测量结果显示,仅右侧颈总动脉分叉处(ICC 0.486)及左侧颈总动脉远段的远心端(ICC 0.576)一致性较好。结论V Flow技术可显示不同位点间颈动脉WSS之间的差异,其组内一致性较好,但在不同年资超声医师间存在一定的差异。 展开更多
关键词 颈动脉 动脉粥样硬化 壁面剪应力 V flow成像技术
下载PDF
基于FLOW3D的集成式水下基盘泥沙冲淤三维数值模拟
18
作者 薛强 高博远 +3 位作者 段辰宇 张子涵 陈同庆 张庆河 《水道港口》 2024年第3期333-338,414,共7页
泥面下集成式水下基盘是为开采渤海通航区等海域油气资源而提出的新型基盘,其基坑周围局部冲淤是工程实践关注的问题之一。基于不可压缩粘性流体运动的Navier-Stokes方程建立泥面下集成式水下基盘基坑周围三维水动力数学模型,对不同粒... 泥面下集成式水下基盘是为开采渤海通航区等海域油气资源而提出的新型基盘,其基坑周围局部冲淤是工程实践关注的问题之一。基于不可压缩粘性流体运动的Navier-Stokes方程建立泥面下集成式水下基盘基坑周围三维水动力数学模型,对不同粒径和不同流速情况下的局部冲淤进行了模拟。结果表明:泥沙粒径为0.005 mm时,由于泥沙较难起动,基坑附近局部冲淤较小。粒径分别为0.05 mm和0.1 mm时,在典型流速作用下,基盘附近可分别形成1 m左右和4 m左右的淤积。 展开更多
关键词 水下基盘 数值模拟 局部冲淤 三维水动力 冲刷 flow3D
下载PDF
Numerical modeling and parametric sensitivity analysis of heat transfer and two-phase oil and water flow characteristics in horizontal and inclined flowlines using OpenFOAM 被引量:1
19
作者 Nsidibe Sunday Abdelhakim Settar +1 位作者 Khaled Chetehouna Nicolas Gascoin 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1183-1199,共17页
Estimating the oil-water temperatures in flowlines is challenging especially in deepwater and ultra-deepwater offshore applications where issues of flow assurance and dramatic heat transfer are likely to occur due to ... Estimating the oil-water temperatures in flowlines is challenging especially in deepwater and ultra-deepwater offshore applications where issues of flow assurance and dramatic heat transfer are likely to occur due to the temperature difference between the fluids and the surroundings. Heat transfer analysis is very important for the prediction and prevention of deposits in oil and water flowlines, which could impede the flow and give rise to huge financial losses. Therefore, a 3D mathematical model of oil-water Newtonian flow under non-isothermal conditions is established to explore the complex mechanisms of the two-phase oil-water transportation and heat transfer in different flowline inclinations. In this work, a non-isothermal two-phase flow model is first modified and then implemented in the InterFoam solver by introducing the energy equation using OpenFOAM® code. The Low Reynolds Number (LRN) k-ε turbulence model is utilized to resolve the turbulence phenomena within the oil and water mixtures. The flow patterns and the local heat transfer coefficients (HTC) for two-phase oil-water flow at different flowlines inclinations (0°, +4°, +7°) are validated by the experimental literature results and the relative errors are also compared. Global sensitivity analysis is then conducted to determine the effect of the different parameters on the performance of the produced two-phase hydrocarbon systems for effective subsea fluid transportation. Thereafter, HTC and flow patterns for oil-water flows at downward inclinations of 4°, and 7° can be predicted by the models. The velocity distribution, pressure gradient, liquid holdup, and temperature variation at the flowline cross-sections are simulated and analyzed in detail. Consequently, the numerical model can be generally applied to compute the global properties of the fluid and other operating parameters that are beneficial in the management of two-phase oil-water transportation. 展开更多
关键词 flow assurance flow pattern Heat transfer flowlines Two-phase flow Global sensitivity analysis
下载PDF
Fine-grained gravity flow sedimentation and its influence on development of shale oil sweet sections in lacustrine basins in China 被引量:1
20
作者 ZOU Caineng FENG Youliang +6 位作者 YANG Zhi JIANG Wenqi ZHANG Tianshu ZHANG Hong WANG Xiaoni ZHU Jichang WEI Qizhao 《Petroleum Exploration and Development》 SCIE 2023年第5期1013-1029,共17页
The geological conditions and processes of fine-grained gravity flow sedimentation in continental lacustrine basins in China are analyzed to construct the model of fine-grained gravity flow sedimentation in lacustrine... The geological conditions and processes of fine-grained gravity flow sedimentation in continental lacustrine basins in China are analyzed to construct the model of fine-grained gravity flow sedimentation in lacustrine basin,reveal the development laws of fine-grained deposits and source-reservoir,and identify the sweet sections of shale oil.The results show that fine-grained gravity flow is one of the important sedimentary processes in deep lake environment,and it can transport fine-grained clasts and organic matter in shallow water to deep lake,forming sweet sections and high-quality source rocks of shale oil.Fine-grained gravity flow deposits in deep waters of lacustrine basins in China are mainly fine-grained high-density flow,fine-grained turbidity flow(including surge-like turbidity flow and fine-grained hyperpycnal flow),fine-grained viscous flow(including fine-grained debris flow and mud flow),and fine-grained transitional flow deposits.The distribution of fine-grained gravity flow deposits in the warm and humid unbalanced lacustrine basins are controlled by lake-level fluctuation,flooding events,and lakebed paleogeomorphology.During the lake-level rise,fine-grained hyperpycnal flow caused by flooding formed fine-grained channel–levee–lobe system in the flat area of the deep lake.During the lake-level fall,the sublacustrine fan system represented by unconfined channel was developed in the flexural slope breaks and sedimentary slopes of depressed lacustrine basins,and in the steep slopes of faulted lacustrine basins;the sublacustrine fan system with confined or unconfined channel was developed on the gentle slopes and in axial direction of faulted lacustrine basins,with fine-grained gravity flow deposits possibly existing in the lower fan.Within the fourth-order sequences,transgression might lead to organic-rich shale and fine-grained hyperpycnal flow deposits,while regression might cause fine-grained high-density flow,surge-like turbidity flow,fine-grained debris flow,mud flow,and fine-grained transitional flow deposits.Since the Permian,in the shale strata of lacustrine basins in China,multiple transgression-regression cycles of fourth-order sequences have formed multiple source-reservoir assemblages.Diverse fine-grained gravity flow sedimentation processes have created sweet sections of thin siltstone consisting of fine-grained high-density flow,fine-grained hyperpycnal flow and surge-like turbidity flow deposits,sweet sections with interbeds of mudstone and siltstone formed by fine-grained transitional flows,and sweet sections of shale containing silty and muddy clasts and with horizontal bedding formed by fine-grained debris flow and mud flow.The model of fine-grained gravity flow sedimentation in lacustrine basin is significant for the scientific evaluation of sweet shale oil reservoir and organic-rich source rock. 展开更多
关键词 fine-grained deposit hyperpycnal flow deposit fine-grained debris flow deposit muddy flow deposit fine-grained transitional flow deposit reservoir sweet section organic-rich source rock shale oil
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部