Laser driven flyer plate technology offers improved safety and reliability for detonation of explosives in industrial applications ranging from mining and stone quarrying to the aerospace and defense industries.This s...Laser driven flyer plate technology offers improved safety and reliability for detonation of explosives in industrial applications ranging from mining and stone quarrying to the aerospace and defense industries.This study is based on developing a safer laser driven flyer plate prototype comprised of a laser initiator and a flyer plate subsystem that can be used with secondary explosives.System parameters were optimized to initiate the shock-to-detonation transition(SDT)of a secondary explosive based on the impact created by the flyer plate on the explosive surface.Rupture of the flyer was investigated at the mechanically weakened region located on the interface of these subsystems,where the product gases from the deflagration of the explosive provide the required energy.A bilayer energetic material was used,where the first layer consisted of a pyrotechnic component,zirconium potassium perchlorate(ZPP),for sustaining the ignition by the laser beam and the second layer consisted of an insensitive explosive,cyclotetramethylene-tetranitramine(HMX),for deflagration.A plexiglass interface was used to enfold the energetic material.The focal length of the laser beam from the diode was optimized to provide a homogeneous beam profile with maximum power at the surface of the ZPP.Closed bomb experiments were conducted in an internal volume of 10 cm^(3) for evaluation of performance.Dependency of the laser driven flyer plate system output on confinement,explosive density,and laser beam power were analyzed.Measurements using a high-speed camera resulted in a flyer velocity of 670±20 m/s that renders the prototype suitable as a laser detonator in applications,where controlled employment of explosives is critical.展开更多
A theoretical model for calculating electric-power curves of small-size foil during its electrical explosion is given.This technique is based on temperature dependence of foil conductivity.After taking into account th...A theoretical model for calculating electric-power curves of small-size foil during its electrical explosion is given.This technique is based on temperature dependence of foil conductivity.After taking into account the energy conversion of the foil explosion,the power-time curve is applied to the hydrodynamic code.One-dimensional numerical simulations of electric-explosion driving flyers are performed using this code.Calculated flyer velocities lie within ±8% of experimental data from Lawrence Livermore National Laboratory (LLNL),and simulated history curves of flyer velocities coincide well with those measured using velocity interferometer system for any reflector (VISAR),indicating a helpful work for design optimization of slapper detonators.展开更多
Roving flyer is an important part of roving frame. Its dynamic expansions affect the quality of rove greatly. The expansions are calculated by means of the general program SAP84 based on finite element method in this ...Roving flyer is an important part of roving frame. Its dynamic expansions affect the quality of rove greatly. The expansions are calculated by means of the general program SAP84 based on finite element method in this paper. Its measuring principle and usage are also described. The results of calculating and measuring are identical. The method presented in the paper is effective for studying the properties of roving flyer.展开更多
By means of Mylar flyer shock explosives driven by electric gun, the method of testing the flyer initiation sensitivity of explosives is studied, and some experiments are done. The experimental results show that the t...By means of Mylar flyer shock explosives driven by electric gun, the method of testing the flyer initiation sensitivity of explosives is studied, and some experiments are done. The experimental results show that the test method established is correct, which is very important and instructive to study and evaluate the safety and reliability of explosives. For the moment, the test should be researched and discussed further..展开更多
Following the successful Swiss Innovation Week(SIW)held in July 2018,the Embassy of Switzerland in China launches its 2nd edition from 12 to 14of June 2019.With Swiss drones as the brand-new theme,Switzerland’s drone...Following the successful Swiss Innovation Week(SIW)held in July 2018,the Embassy of Switzerland in China launches its 2nd edition from 12 to 14of June 2019.With Swiss drones as the brand-new theme,Switzerland’s drone ecosystem and innovation in the field of flying robots were present.According to various rankings,Switzerland is one of the most innovative countrie s in the world and also one of the most competitive co untries.展开更多
Strong competition in retail distribution and the development of new purchasing options for the consumer generate a growing need to strengthen the retailers' brand image using all the communication elements, with pro...Strong competition in retail distribution and the development of new purchasing options for the consumer generate a growing need to strengthen the retailers' brand image using all the communication elements, with promotional flyers being one of the most important ways to do this. Promotional flyers make-up 5.1% of the money spent on communication and rank third place in terms of importance for retailers. The aim of this investigation work is to focus on analysing the utility of a promotional tool, such as a flyer, to fulfil a strategic objective, like creating a retail brand image, within a modern dynamic sector that is growing fast, such as Category Killers. Two sources of information have been used to carry out the research. On the One hand, a survey conducted on those responsible for the definition and execution of the promotional plan, and on the other hand, the accumulation and analysis of all the flyers issued into the market thought-out a year by those retailers which belong to this format, in order to conduct a study of seven defined image indicators. This information has been largely analyzed using multidimensional scaling method and chi-square test. As a result, we have managed to gather the differential elements in flyers execution between those retailers that prize the communications of image attributes and those retailers which concentrate on communicating price. The first group makes greater use of promotional theme related flyers, and shows greater differentiation in both product assortment and the depth of the range being communicated.展开更多
The initiating behavior of fine-grained explosives by small flyer is studied. The diameter of small flyer in this device is 1mm. The test results indicate that the granularity of explosives has great effect on its fly...The initiating behavior of fine-grained explosives by small flyer is studied. The diameter of small flyer in this device is 1mm. The test results indicate that the granularity of explosives has great effect on its flyer initiating sensitivity.The flyer initiating sensitivity of the fine-grained explosives is higher and the critical initiating energy is lower than that of common explosives. For common explosive, the flyer initiating sensitivity increases as the density is reduced. But for the fine-grained explosive, the test results are exactly opposite.展开更多
In this work,a Cu-10Ta alloy with a copper to tantalum mass ratio of 9:1 is prepared using powder metallurgy technology.Physical properties of the alloy,including density,microstructure,melting point,and constant-volu...In this work,a Cu-10Ta alloy with a copper to tantalum mass ratio of 9:1 is prepared using powder metallurgy technology.Physical properties of the alloy,including density,microstructure,melting point,and constant-volume specific heat,are tested.Via the split Hopkinson pressure bar(SHPB)and flyerplate impact experiments,the relationship between equivalent stress and equivalent plastic strain of the material is studied at temperatures of 298-823 K and under strain rates of 1×10^(-3)-5.2×10^(3)s^(-1),and the Hugoniot relationship at impact pressures of 1.46-17.25 GPa and impact velocities of 108-942 m/s is obtained.Evolution of the Cu-10Ta microstructure that occurs during high-strain-rate impact is analyzed.Results indicate that the Cu-10Ta alloy possesses good thermal stability,and at ambient temperatures of up to 50%its melting point,stress softening of less than 15%of the initial strength is observed.A modified J-C constitutive model is employed to accurately predict the variation of yield strength with strain rate.Under strong impact,the copper phase is identified as the primary source of plastic deformation in the Cu-10Ta alloy,while significant deformation of the high-strength tantalum particles is less pronounced.Furthermore,the longitudinal wave speed D is found to correlate linearly with the particle velocity u upon strong impact.Analysis reveals that the sound speed and spallation strength of the alloy increase with increasing impact pressure.展开更多
The Disc Acceleration e Xperiment(DAX)is one of the most recent experimental methods of performance characterization of new energetic materials.A cylindrical explosive charge accelerates a thin metallic disc and its v...The Disc Acceleration e Xperiment(DAX)is one of the most recent experimental methods of performance characterization of new energetic materials.A cylindrical explosive charge accelerates a thin metallic disc and its velocity is measured continuously using photonic Doppler velocimetry.The detonation velocity is measured simultaneously.The DAX test can be used to obtain the Chapman-Jouguet(CJ)detonation pressure and to describe detonation products expansion using reduced amount of explosive.A series of DAX tests was performed at various charge diameters and disc thicknesses with Semtex 1 A plastic bonded explosive and sensitized nitromethane.The DAX-like evaluation was also applied to previously measured data of Semtex 1A and A-IX-1 explosives.The optimum disc thickness is determined by the disc to explosive mass ratio of 0.01-0.08.The repeatability of the Semtex 1 A detonation pressure results is about four times lower compared to the pressed and liquid explosives.展开更多
Taking CL-20(Hexanitrohexaazaisowurtzitane)-based aluminized explosives with high gurney energy as the research object, this research experimentally investigates the work capability of different aluminized explosive f...Taking CL-20(Hexanitrohexaazaisowurtzitane)-based aluminized explosives with high gurney energy as the research object, this research experimentally investigates the work capability of different aluminized explosive formulations when driving metal flyer plates in the denotation wave propagation direction.The research results showed that the formulations with 43 μm aluminum(Al) powder particles(The particle sizes of Al powder were in the range of 2~43 μm) exhibited the optimal performance in driving flyer plates along the denotation wave propagation direction. Compared to the formulations with Al powder 13 μm, the formulations with Al powder 2 μm delivered better performance in accelerating metal flyer plates in the early stage, which, however, turned to be poor in the later stage. The CL-20-based explosives containing 25% Al far under-performed those containing 15% Al. Based on the proposed quasi-isentropic hypothesis, relevant isentropy theories, and the functional relationship between detonation parameters and entropy as well as Al reaction degree, the characteristic lines of aluminized explosives in accelerating flyer plates were theoretically studied, a quasi-isentropic theoretical model for the aluminized explosive driving the flyer plate was built and the calculation methods for the variations of flyer plate velocity, Al reaction degree, and detonation product parameters with time and axial positions were developed. The theoretical model built is verified by the experimental results of the CL-20-based aluminized explosive driving flyer plate. It was found that the model built could accurately calculate the variations of flyer plate velocity and Al reaction degree over time. In addition, how physical parameters including detonation product pressure and temperature varied with time and axial positions was identified. The action time of the positive pressure after the detonation of aluminized explosives was found prolonged and the downtrend of the temperature was slowed down and even reversed to a slight rise due to the aftereffect reaction between the Al powder and the detonation products.展开更多
Reactive armour is a very efficient add-on armour against shaped charge threats.Explosive reactive armour consists of one or several plates that are accelerated by an explosive.Similar but less violent acceleration of...Reactive armour is a very efficient add-on armour against shaped charge threats.Explosive reactive armour consists of one or several plates that are accelerated by an explosive.Similar but less violent acceleration of plates can also be achieved in a completely inert reactive armour.To be efficient against elongated jets,the motion of the plates needs to be inclined against the jet such that a sliding contact between the jet and the plates is established.This sliding contact causes a deflection and thinning of the jet.Under certain circumstances,the contact will become unstable,leading to severe disturbances on the jet.These disturbances will drastically reduce the jet penetration performance and it is therefore of interest to study the conditions that leads to an unstable contact.Previous studies on the interaction between shaped charge jets and flyer plates have shown that it is mainly the forward moving plate in an explosive reactive armour that is effective in disturbing the jet.This is usually attributed to the higher plate-to-jet mass flux ratio involved in the collision of the forward moving plate compared to the backward moving plate.For slow moving plates,as occurs in inert reactive armour,the difference in mass flux for the forward and backward moving plate is much lesser,and it is therefore of interest to study if other factors than the mass flux influences on the protection capability.In this work,experiments have been performed where a plate is accelerated along its length,interacting with a shaped charge jet that is fired at an oblique angle to the plate’s normal,either against or along the plate’s velocity.The arrangement corresponds to a jet interacting with a flyer plate from a reactive armour,with the exception that the collision velocity is the same for both types of obliquities in these experiments.The experiments show that disturbances on the jet are different in the two cases even though the collision velocities are the same.Numerical simulations of the interaction support the observation.The difference is attributed to the character of the contact pressure in the interaction region.For a backward moving plate,the maximum contact pressure is obtained at the beginning of the interaction zone and the contact pressure is therefore higher upstream than downstream of the jet while the opposite is true for a forward moving plate.A negative interface pressure gradient with respect to the jet motion results in a more stable flow than a positive,which means that the jet-plate contact is more stable for a backward moving plate than for a forward moving plate.A forward moving plate is thus more effective in disturbing the jet than a backward moving plate,not only because of the higher jet to plate mass flux ratio but also because of the character of the contact with the jet.展开更多
文摘Laser driven flyer plate technology offers improved safety and reliability for detonation of explosives in industrial applications ranging from mining and stone quarrying to the aerospace and defense industries.This study is based on developing a safer laser driven flyer plate prototype comprised of a laser initiator and a flyer plate subsystem that can be used with secondary explosives.System parameters were optimized to initiate the shock-to-detonation transition(SDT)of a secondary explosive based on the impact created by the flyer plate on the explosive surface.Rupture of the flyer was investigated at the mechanically weakened region located on the interface of these subsystems,where the product gases from the deflagration of the explosive provide the required energy.A bilayer energetic material was used,where the first layer consisted of a pyrotechnic component,zirconium potassium perchlorate(ZPP),for sustaining the ignition by the laser beam and the second layer consisted of an insensitive explosive,cyclotetramethylene-tetranitramine(HMX),for deflagration.A plexiglass interface was used to enfold the energetic material.The focal length of the laser beam from the diode was optimized to provide a homogeneous beam profile with maximum power at the surface of the ZPP.Closed bomb experiments were conducted in an internal volume of 10 cm^(3) for evaluation of performance.Dependency of the laser driven flyer plate system output on confinement,explosive density,and laser beam power were analyzed.Measurements using a high-speed camera resulted in a flyer velocity of 670±20 m/s that renders the prototype suitable as a laser detonator in applications,where controlled employment of explosives is critical.
基金Sponsored by the National Basic Research Program of China ("973"Program)
文摘A theoretical model for calculating electric-power curves of small-size foil during its electrical explosion is given.This technique is based on temperature dependence of foil conductivity.After taking into account the energy conversion of the foil explosion,the power-time curve is applied to the hydrodynamic code.One-dimensional numerical simulations of electric-explosion driving flyers are performed using this code.Calculated flyer velocities lie within ±8% of experimental data from Lawrence Livermore National Laboratory (LLNL),and simulated history curves of flyer velocities coincide well with those measured using velocity interferometer system for any reflector (VISAR),indicating a helpful work for design optimization of slapper detonators.
文摘Roving flyer is an important part of roving frame. Its dynamic expansions affect the quality of rove greatly. The expansions are calculated by means of the general program SAP84 based on finite element method in this paper. Its measuring principle and usage are also described. The results of calculating and measuring are identical. The method presented in the paper is effective for studying the properties of roving flyer.
文摘By means of Mylar flyer shock explosives driven by electric gun, the method of testing the flyer initiation sensitivity of explosives is studied, and some experiments are done. The experimental results show that the test method established is correct, which is very important and instructive to study and evaluate the safety and reliability of explosives. For the moment, the test should be researched and discussed further..
文摘Following the successful Swiss Innovation Week(SIW)held in July 2018,the Embassy of Switzerland in China launches its 2nd edition from 12 to 14of June 2019.With Swiss drones as the brand-new theme,Switzerland’s drone ecosystem and innovation in the field of flying robots were present.According to various rankings,Switzerland is one of the most innovative countrie s in the world and also one of the most competitive co untries.
文摘Strong competition in retail distribution and the development of new purchasing options for the consumer generate a growing need to strengthen the retailers' brand image using all the communication elements, with promotional flyers being one of the most important ways to do this. Promotional flyers make-up 5.1% of the money spent on communication and rank third place in terms of importance for retailers. The aim of this investigation work is to focus on analysing the utility of a promotional tool, such as a flyer, to fulfil a strategic objective, like creating a retail brand image, within a modern dynamic sector that is growing fast, such as Category Killers. Two sources of information have been used to carry out the research. On the One hand, a survey conducted on those responsible for the definition and execution of the promotional plan, and on the other hand, the accumulation and analysis of all the flyers issued into the market thought-out a year by those retailers which belong to this format, in order to conduct a study of seven defined image indicators. This information has been largely analyzed using multidimensional scaling method and chi-square test. As a result, we have managed to gather the differential elements in flyers execution between those retailers that prize the communications of image attributes and those retailers which concentrate on communicating price. The first group makes greater use of promotional theme related flyers, and shows greater differentiation in both product assortment and the depth of the range being communicated.
基金the Nature Science Foundation of Shanxi Province (20021064)
文摘The initiating behavior of fine-grained explosives by small flyer is studied. The diameter of small flyer in this device is 1mm. The test results indicate that the granularity of explosives has great effect on its flyer initiating sensitivity.The flyer initiating sensitivity of the fine-grained explosives is higher and the critical initiating energy is lower than that of common explosives. For common explosive, the flyer initiating sensitivity increases as the density is reduced. But for the fine-grained explosive, the test results are exactly opposite.
文摘In this work,a Cu-10Ta alloy with a copper to tantalum mass ratio of 9:1 is prepared using powder metallurgy technology.Physical properties of the alloy,including density,microstructure,melting point,and constant-volume specific heat,are tested.Via the split Hopkinson pressure bar(SHPB)and flyerplate impact experiments,the relationship between equivalent stress and equivalent plastic strain of the material is studied at temperatures of 298-823 K and under strain rates of 1×10^(-3)-5.2×10^(3)s^(-1),and the Hugoniot relationship at impact pressures of 1.46-17.25 GPa and impact velocities of 108-942 m/s is obtained.Evolution of the Cu-10Ta microstructure that occurs during high-strain-rate impact is analyzed.Results indicate that the Cu-10Ta alloy possesses good thermal stability,and at ambient temperatures of up to 50%its melting point,stress softening of less than 15%of the initial strength is observed.A modified J-C constitutive model is employed to accurately predict the variation of yield strength with strain rate.Under strong impact,the copper phase is identified as the primary source of plastic deformation in the Cu-10Ta alloy,while significant deformation of the high-strength tantalum particles is less pronounced.Furthermore,the longitudinal wave speed D is found to correlate linearly with the particle velocity u upon strong impact.Analysis reveals that the sound speed and spallation strength of the alloy increase with increasing impact pressure.
文摘The Disc Acceleration e Xperiment(DAX)is one of the most recent experimental methods of performance characterization of new energetic materials.A cylindrical explosive charge accelerates a thin metallic disc and its velocity is measured continuously using photonic Doppler velocimetry.The detonation velocity is measured simultaneously.The DAX test can be used to obtain the Chapman-Jouguet(CJ)detonation pressure and to describe detonation products expansion using reduced amount of explosive.A series of DAX tests was performed at various charge diameters and disc thicknesses with Semtex 1 A plastic bonded explosive and sensitized nitromethane.The DAX-like evaluation was also applied to previously measured data of Semtex 1A and A-IX-1 explosives.The optimum disc thickness is determined by the disc to explosive mass ratio of 0.01-0.08.The repeatability of the Semtex 1 A detonation pressure results is about four times lower compared to the pressed and liquid explosives.
基金National Natural Science Foundation of China(Grant No.11872120).
文摘Taking CL-20(Hexanitrohexaazaisowurtzitane)-based aluminized explosives with high gurney energy as the research object, this research experimentally investigates the work capability of different aluminized explosive formulations when driving metal flyer plates in the denotation wave propagation direction.The research results showed that the formulations with 43 μm aluminum(Al) powder particles(The particle sizes of Al powder were in the range of 2~43 μm) exhibited the optimal performance in driving flyer plates along the denotation wave propagation direction. Compared to the formulations with Al powder 13 μm, the formulations with Al powder 2 μm delivered better performance in accelerating metal flyer plates in the early stage, which, however, turned to be poor in the later stage. The CL-20-based explosives containing 25% Al far under-performed those containing 15% Al. Based on the proposed quasi-isentropic hypothesis, relevant isentropy theories, and the functional relationship between detonation parameters and entropy as well as Al reaction degree, the characteristic lines of aluminized explosives in accelerating flyer plates were theoretically studied, a quasi-isentropic theoretical model for the aluminized explosive driving the flyer plate was built and the calculation methods for the variations of flyer plate velocity, Al reaction degree, and detonation product parameters with time and axial positions were developed. The theoretical model built is verified by the experimental results of the CL-20-based aluminized explosive driving flyer plate. It was found that the model built could accurately calculate the variations of flyer plate velocity and Al reaction degree over time. In addition, how physical parameters including detonation product pressure and temperature varied with time and axial positions was identified. The action time of the positive pressure after the detonation of aluminized explosives was found prolonged and the downtrend of the temperature was slowed down and even reversed to a slight rise due to the aftereffect reaction between the Al powder and the detonation products.
基金funded by the Swedish Armed Forces under Contract No AT.9220620。
文摘Reactive armour is a very efficient add-on armour against shaped charge threats.Explosive reactive armour consists of one or several plates that are accelerated by an explosive.Similar but less violent acceleration of plates can also be achieved in a completely inert reactive armour.To be efficient against elongated jets,the motion of the plates needs to be inclined against the jet such that a sliding contact between the jet and the plates is established.This sliding contact causes a deflection and thinning of the jet.Under certain circumstances,the contact will become unstable,leading to severe disturbances on the jet.These disturbances will drastically reduce the jet penetration performance and it is therefore of interest to study the conditions that leads to an unstable contact.Previous studies on the interaction between shaped charge jets and flyer plates have shown that it is mainly the forward moving plate in an explosive reactive armour that is effective in disturbing the jet.This is usually attributed to the higher plate-to-jet mass flux ratio involved in the collision of the forward moving plate compared to the backward moving plate.For slow moving plates,as occurs in inert reactive armour,the difference in mass flux for the forward and backward moving plate is much lesser,and it is therefore of interest to study if other factors than the mass flux influences on the protection capability.In this work,experiments have been performed where a plate is accelerated along its length,interacting with a shaped charge jet that is fired at an oblique angle to the plate’s normal,either against or along the plate’s velocity.The arrangement corresponds to a jet interacting with a flyer plate from a reactive armour,with the exception that the collision velocity is the same for both types of obliquities in these experiments.The experiments show that disturbances on the jet are different in the two cases even though the collision velocities are the same.Numerical simulations of the interaction support the observation.The difference is attributed to the character of the contact pressure in the interaction region.For a backward moving plate,the maximum contact pressure is obtained at the beginning of the interaction zone and the contact pressure is therefore higher upstream than downstream of the jet while the opposite is true for a forward moving plate.A negative interface pressure gradient with respect to the jet motion results in a more stable flow than a positive,which means that the jet-plate contact is more stable for a backward moving plate than for a forward moving plate.A forward moving plate is thus more effective in disturbing the jet than a backward moving plate,not only because of the higher jet to plate mass flux ratio but also because of the character of the contact with the jet.