Density functional theory (DFT) calculations are performed to investigate the electronic structure and ferromagnetism of (In, Cr)2O3. The densities of states suggest that the Cr dopants provide nearly 100% polariz...Density functional theory (DFT) calculations are performed to investigate the electronic structure and ferromagnetism of (In, Cr)2O3. The densities of states suggest that the Cr dopants provide nearly 100% polarization of the conduction carriers and the ferromagnetic ground state in Cr-doped In2O3 can be explained from p-d hybridization mechanism. The calculation results also show that the ferromagnetism is strengthened in the presence of oxygen vacancy.展开更多
High resolution structural studies of DNA and DNA binding proteins by atomic force microscopy(AFM) require well-bound samples on suitably flat substrates. Adsorbing the DNA onto a positively charged supported lipid bi...High resolution structural studies of DNA and DNA binding proteins by atomic force microscopy(AFM) require well-bound samples on suitably flat substrates. Adsorbing the DNA onto a positively charged supported lipid bilayer has previously been shown to be a potentially effective strategy for structural studies with AFM. Here, using our home-built frequency-modulation AFM(FM-AFM), we show that these bilayer substrates are only maximally effective for high resolution AFM when the samples are short, linear DNA, compared with circular plasmid DNA. We find that, with the former sample, the measured width of the DNA is about 2 nm, the known DNA diameter, and there is a clear height modulation along the length of the DNA with a periodicity of about 3.4 nm, in excellent agreement with the known pitch of the double helix. This sample preparation strategy is expected to enable higher resolution studies of DNA and DNA binding proteins with FM-AFM than that can presently be achieved.展开更多
Frequency-modulation atomic force microscopy(FM-AFM) is a highly versatile tool for surface science.Besides imaging surfaces, FM-AFM is capable of measuring interactions between the AFM probe and the surface with high...Frequency-modulation atomic force microscopy(FM-AFM) is a highly versatile tool for surface science.Besides imaging surfaces, FM-AFM is capable of measuring interactions between the AFM probe and the surface with high sensitivity, which can provide chemical information at sub-nanometer resolution. This is achieved by deconvoluting the frequency shift, which is directly measured in experiments, into the force between the probe and sample. At present, the widely used method to perform this deconvolution has been shown to be accurate under high quality(high-Q) factor vacuum conditions. However, under low quality(low-Q) factor conditions, such as in solution, it is not clear if this method is valid. A previous study apparently verified this relation for experiments in solution by comparing the force calculated by this equation with that obtained in separate experiments using the surface force apparatus(SFA). Here we show that, in solution, a more direct comparison of the force calculated by this relation with that directly measured by the cantilever deflection in AFM reveals significant differences,both qualitative and quantitative. However, we also find that there are complications that hinder this comparison.Namely, while contact with the surface is clear in the direct measurements(including the SFA data), it is less certain in the FM-AFM case. Hence, it is not clear if the two methods are measuring the same tip-sample distance regimes. Thus, our results suggest that a more thorough verification of this relation is required, as application of this formulation for experiments in solution may not be valid.展开更多
DNA molecules were stretched on silanized mica surface with the molecular combing technique, and detected with fluorescence microscopy and atomic force microscopy. Meantime, DNA molecules were stretched with a modifie...DNA molecules were stretched on silanized mica surface with the molecular combing technique, and detected with fluorescence microscopy and atomic force microscopy. Meantime, DNA molecules were stretched with a modified dynamic molecular combing technique and studied with atomic force microscopy. The results indicate that, compared with the dynamic molecular combing technique, the modified dynamic molecular combing technique has advantages of less-sample demand and less contamination to sample; as compared with the molecular combing technique, it has better aligning effect and reproducibility. Combination of this kind of DNA molecular manipulating technique with the single DNA molecule detecting technique by atomic force microscopy and fluorescence microscopy will play an important role in the basic research of molecular dynamics and the application of gene research.展开更多
基金Supported by the National Natural Science Foundation of China (20673019)the Doctoral Degree Programme Foundation of Education Ministry of China (20050386003)the Important Special Foundation of Fujian Province (2005HE01-2-6)
文摘Density functional theory (DFT) calculations are performed to investigate the electronic structure and ferromagnetism of (In, Cr)2O3. The densities of states suggest that the Cr dopants provide nearly 100% polarization of the conduction carriers and the ferromagnetic ground state in Cr-doped In2O3 can be explained from p-d hybridization mechanism. The calculation results also show that the ferromagnetism is strengthened in the presence of oxygen vacancy.
基金the National Basic Research Program(973) of China(No.2013CB932801)the National Natural Science Foundation of China(Nos.991129000,11374207,11375253,31370750,21273148 and 11074168)the Fund of Chinese Academy of Sciences(No.KJCX2-EW-N03)
文摘High resolution structural studies of DNA and DNA binding proteins by atomic force microscopy(AFM) require well-bound samples on suitably flat substrates. Adsorbing the DNA onto a positively charged supported lipid bilayer has previously been shown to be a potentially effective strategy for structural studies with AFM. Here, using our home-built frequency-modulation AFM(FM-AFM), we show that these bilayer substrates are only maximally effective for high resolution AFM when the samples are short, linear DNA, compared with circular plasmid DNA. We find that, with the former sample, the measured width of the DNA is about 2 nm, the known DNA diameter, and there is a clear height modulation along the length of the DNA with a periodicity of about 3.4 nm, in excellent agreement with the known pitch of the double helix. This sample preparation strategy is expected to enable higher resolution studies of DNA and DNA binding proteins with FM-AFM than that can presently be achieved.
基金the National Natural Science Foundation of China(Nos.991129000,11374207,31370750,21273148 and 11074168)
文摘Frequency-modulation atomic force microscopy(FM-AFM) is a highly versatile tool for surface science.Besides imaging surfaces, FM-AFM is capable of measuring interactions between the AFM probe and the surface with high sensitivity, which can provide chemical information at sub-nanometer resolution. This is achieved by deconvoluting the frequency shift, which is directly measured in experiments, into the force between the probe and sample. At present, the widely used method to perform this deconvolution has been shown to be accurate under high quality(high-Q) factor vacuum conditions. However, under low quality(low-Q) factor conditions, such as in solution, it is not clear if this method is valid. A previous study apparently verified this relation for experiments in solution by comparing the force calculated by this equation with that obtained in separate experiments using the surface force apparatus(SFA). Here we show that, in solution, a more direct comparison of the force calculated by this relation with that directly measured by the cantilever deflection in AFM reveals significant differences,both qualitative and quantitative. However, we also find that there are complications that hinder this comparison.Namely, while contact with the surface is clear in the direct measurements(including the SFA data), it is less certain in the FM-AFM case. Hence, it is not clear if the two methods are measuring the same tip-sample distance regimes. Thus, our results suggest that a more thorough verification of this relation is required, as application of this formulation for experiments in solution may not be valid.
文摘DNA molecules were stretched on silanized mica surface with the molecular combing technique, and detected with fluorescence microscopy and atomic force microscopy. Meantime, DNA molecules were stretched with a modified dynamic molecular combing technique and studied with atomic force microscopy. The results indicate that, compared with the dynamic molecular combing technique, the modified dynamic molecular combing technique has advantages of less-sample demand and less contamination to sample; as compared with the molecular combing technique, it has better aligning effect and reproducibility. Combination of this kind of DNA molecular manipulating technique with the single DNA molecule detecting technique by atomic force microscopy and fluorescence microscopy will play an important role in the basic research of molecular dynamics and the application of gene research.