In this article, a novel BiVO4@fibers composite photocatalyst was prepared by a process that monoclinic scheelite BiVO4 nano/micro particles were in situ formated onto fiber materials. The structure, morphology and ph...In this article, a novel BiVO4@fibers composite photocatalyst was prepared by a process that monoclinic scheelite BiVO4 nano/micro particles were in situ formated onto fiber materials. The structure, morphology and photophysical properties of the composite materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-Vis diffuse reflectance spectroscopy, respectively. The immobilization of BiVO4 photocatalyst on fibers reduced the particle size of the photoactive phase, and a few visible-light absorption abilities. The decomposition of a non-biodegradable dye Red FN-3G was selected to examine the photocatalytic activity of the composite photocatalyst. It was found that the formation of composite materials of BiVO4 with fibers didn’t decrease the photocatalytic activity with comparison to that of pure BiVO4. Moreover, it demonstrated that when adjusting the dye solution into about pH = 3, the highest efficiency of dye degradation over the fiber composite material can be obtained.展开更多
文摘In this article, a novel BiVO4@fibers composite photocatalyst was prepared by a process that monoclinic scheelite BiVO4 nano/micro particles were in situ formated onto fiber materials. The structure, morphology and photophysical properties of the composite materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-Vis diffuse reflectance spectroscopy, respectively. The immobilization of BiVO4 photocatalyst on fibers reduced the particle size of the photoactive phase, and a few visible-light absorption abilities. The decomposition of a non-biodegradable dye Red FN-3G was selected to examine the photocatalytic activity of the composite photocatalyst. It was found that the formation of composite materials of BiVO4 with fibers didn’t decrease the photocatalytic activity with comparison to that of pure BiVO4. Moreover, it demonstrated that when adjusting the dye solution into about pH = 3, the highest efficiency of dye degradation over the fiber composite material can be obtained.