期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
人机混驾环境下混行车辆雾模型研究
被引量:
2
1
作者
梁军
徐鹏
+2 位作者
蔡英凤
陈龙
刘擎超
《中国公路学报》
EI
CAS
CSCD
北大核心
2021年第11期255-264,共10页
目前搭载高级驾驶辅助系统和车联网(Vehicular Ad Hoc Network, VANET)技术的智能网联车(Intelligent Connected Vehicles, ICV)正大量涌入人工驾驶车(Manual Vehicle, MV)流之中,ICV与MV共存的异构车辆混行交通态势逐步形成,异构车辆...
目前搭载高级驾驶辅助系统和车联网(Vehicular Ad Hoc Network, VANET)技术的智能网联车(Intelligent Connected Vehicles, ICV)正大量涌入人工驾驶车(Manual Vehicle, MV)流之中,ICV与MV共存的异构车辆混行交通态势逐步形成,异构车辆之间的交互产生壁垒。混行之下单个ICV虽可依托单车硬件传感与单车计算单元实现与MV的交互意图识别,但其受有限算力与有限传感的影响,资源负载增大,时效性与安全性方面存在一定的误差与风险,而混行之下的VANET技术也不能够提供全局性车路资源用以高度匹配ICV与MV的交互场景,而且越来越多的ICV计算需求也在激增VANET的负载压力。对此,结合边缘计算概念中的雾计算理论,提出混行车辆雾模型(Mixed Vehicle Fog, MVF),充分发挥车联网络边缘节点能力,通过合理整合调度ICV资源的方法,解决对MV正常交互意图计算的时效性与安全性问题。该模型首先通过各感知单元响应混行交通环境下ICV与MV的正常交互事件,然后利用基于容错节点分簇的资源调度算法(Fault-tolerant Node Clustering Resource Scheduling Algorithm,FNC-RSA),动态划分局部路段内对交互事件具有相关意图感知与计算需求的ICV为一组"协同雾群",再评估雾内ICV节点自身资源与路由代价,定向定量调度资源,最终实现雾群内部MV交互信息共享与驾驶意图协同计算。试验借助Prescan和MATLAB搭建联合仿真平台,与低能耗自适应分簇型路由算法(Low Energy Adaptive Clustering Hierarchy, LEACH)模型对比,验证MVF模型的运行效率与模型鲁棒性。研究结果表明:MVF模型通过交互事件细分协同雾群,保证了计算负载均衡,提高了ICV定向资源计算与传输效率,比LEACH模型降低了55.17%的平均跳数,缩短了45.40%的平均任务完成时间,抗时延干扰能力强,鲁棒性能优异。该模型对于打破混行环境异构车辆交互壁垒,提高混行道路交通行车安全,创造车联网络良性发展空间具有积极作用。
展开更多
关键词
交通工程
MVF模型
fnc-rsa算法
智能网联车
混行交通
原文传递
题名
人机混驾环境下混行车辆雾模型研究
被引量:
2
1
作者
梁军
徐鹏
蔡英凤
陈龙
刘擎超
机构
江苏大学汽车工程研究院
出处
《中国公路学报》
EI
CAS
CSCD
北大核心
2021年第11期255-264,共10页
基金
国家重点研发计划项目(2018YFB1600500)
国家自然科学基金项目(51875255)
江苏省六大人才高峰项目(2018-TD-GDZB-022)。
文摘
目前搭载高级驾驶辅助系统和车联网(Vehicular Ad Hoc Network, VANET)技术的智能网联车(Intelligent Connected Vehicles, ICV)正大量涌入人工驾驶车(Manual Vehicle, MV)流之中,ICV与MV共存的异构车辆混行交通态势逐步形成,异构车辆之间的交互产生壁垒。混行之下单个ICV虽可依托单车硬件传感与单车计算单元实现与MV的交互意图识别,但其受有限算力与有限传感的影响,资源负载增大,时效性与安全性方面存在一定的误差与风险,而混行之下的VANET技术也不能够提供全局性车路资源用以高度匹配ICV与MV的交互场景,而且越来越多的ICV计算需求也在激增VANET的负载压力。对此,结合边缘计算概念中的雾计算理论,提出混行车辆雾模型(Mixed Vehicle Fog, MVF),充分发挥车联网络边缘节点能力,通过合理整合调度ICV资源的方法,解决对MV正常交互意图计算的时效性与安全性问题。该模型首先通过各感知单元响应混行交通环境下ICV与MV的正常交互事件,然后利用基于容错节点分簇的资源调度算法(Fault-tolerant Node Clustering Resource Scheduling Algorithm,FNC-RSA),动态划分局部路段内对交互事件具有相关意图感知与计算需求的ICV为一组"协同雾群",再评估雾内ICV节点自身资源与路由代价,定向定量调度资源,最终实现雾群内部MV交互信息共享与驾驶意图协同计算。试验借助Prescan和MATLAB搭建联合仿真平台,与低能耗自适应分簇型路由算法(Low Energy Adaptive Clustering Hierarchy, LEACH)模型对比,验证MVF模型的运行效率与模型鲁棒性。研究结果表明:MVF模型通过交互事件细分协同雾群,保证了计算负载均衡,提高了ICV定向资源计算与传输效率,比LEACH模型降低了55.17%的平均跳数,缩短了45.40%的平均任务完成时间,抗时延干扰能力强,鲁棒性能优异。该模型对于打破混行环境异构车辆交互壁垒,提高混行道路交通行车安全,创造车联网络良性发展空间具有积极作用。
关键词
交通工程
MVF模型
fnc-rsa算法
智能网联车
混行交通
Keywords
traffic engineering
MVF model
fnc-rsa
algorithm
intelligent connected vehicle
mixed traffic
分类号
U491.2 [交通运输工程—交通运输规划与管理]
原文传递
题名
作者
出处
发文年
被引量
操作
1
人机混驾环境下混行车辆雾模型研究
梁军
徐鹏
蔡英凤
陈龙
刘擎超
《中国公路学报》
EI
CAS
CSCD
北大核心
2021
2
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部