期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于图神经网络的航空数据异常检测
1
作者 易霜 韩笑东 李炜 《现代信息科技》 2024年第16期53-59,共7页
飞行品质监控(FOQA)数据记录了飞行状态的详细参数,对于评估飞行操作的质量和安全性至关重要。传统的“超限检测”算法通过与预先建立的阈值进行比较来识别异常行为。相比之下,深度学习方法能够更全面、灵活地分析FOQA数据,提高异常行... 飞行品质监控(FOQA)数据记录了飞行状态的详细参数,对于评估飞行操作的质量和安全性至关重要。传统的“超限检测”算法通过与预先建立的阈值进行比较来识别异常行为。相比之下,深度学习方法能够更全面、灵活地分析FOQA数据,提高异常行为的检测精度。文章提出的TAGDNet是用于FOQA数据多类别异常检测的创新框架,包括时序卷积网络、图神经网络和分层图池化等关键组件。该框架首先通过时序卷积网络提取时序特征,然后通过引入图神经网络进行节点间信息传播,最后通过分层图池化获得异常检测结果。通过在公开可用的FOQA数据多类别异常检测数据集上进行大量实验证明,该方法相较于其他先进的方法表现更为优越。 展开更多
关键词 foqa数据 异常检测 图神经网络 图池化 时序卷积
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部